bibtype J - Journal Article
ARLID 0332915
utime 20240111140729.5
mtime 20091202235959.9
DOI 10.1016/j.sigpro.2009.04.021
title (primary) (eng) Blind Separation of Piecewise Stationary NonGaussian Sources
specification
page_count 15 s.
media_type www
serial
ARLID cav_un_epca*0255076
ISSN 0165-1684
title Signal Processing
volume_id 89
volume 12 (2009)
page_num 2570-2584
publisher
name Elsevier
title (cze) Slepá separace po částech stacionárních negaussovských zdrojů
keyword Independent component analysis
keyword blind source separation
keyword Cramer-Rao lower bound
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0050739
name1 Málek
name2 J.
country CZ
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0238913
name1 Deville
name2 Y.
country FR
author
ARLID cav_un_auth*0238914
name1 Hosseini
name2 S.
country FR
source
source_type pdf
url http://library.utia.cas.cz/separaty/2009/SI/tichavsky-blind separationofpiecewisestationarynon-gaussiansources.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
project
project_id GA102/07/P384
agency GA ČR
country CZ
research CEZ:AV0Z10750506
abstract (eng) We address Independent Component Analysis (ICA) of piecewise stationary and nonGaussian signals and propose a novel ICA algorithm called Block EFICA that is based on this generalized model of signals. The method is a further extension of the popular nonGaussianity-based FastICA algorithm and of its recently optimized variant called EFICA. In contrast to these methods, Block EFICA is developed to effectively exploit varying distribution of signals, thus, also their varying variance in time (nonstationarity) or, more precisely, in time-intervals (piecewise stationarity). In theory, the accuracy of the method asymptotically approaches Cramer-Rao lower bound (CRLB) under common assumptions when variance of the signals is constant. On the other hand, the performance is practically close to the CLRB even when variance of the signals is changing.
abstract (cze) V práci je navržen algoritmus pro slepou separaci lineární okamžité směsi nezávislých po částech stacionárních negaussovských zdrojů. Algoritmus je nazván "bloková EFICA" a je rozšířením a zobecněním dřívějších algorimů FastICA a EFICA. V případě, že separované signálz mají konstantní varianci, dosahuje přesnost separace asymptoticky příslušné Rao-Cramerovy meze. Přínos algoritmu je ukázán na separaci okamžité směsi zvukových signálů.
reportyear 2010
RIV BB
permalink http://hdl.handle.net/11104/0178031
mrcbT16-f 1.283
mrcbT16-g 0.261
mrcbT16-h 7.7
mrcbT16-i 0.0127
mrcbT16-j 0.528
mrcbT16-k 3980
mrcbT16-l 261
mrcbT16-q 68
mrcbT16-s 0.991
mrcbT16-y 25.02
mrcbT16-x 1.77
arlyear 2009
mrcbU56 pdf
mrcbU63 cav_un_epca*0255076 Signal Processing 0165-1684 1872-7557 Roč. 89 č. 12 2009 2570 2584 Elsevier