bibtype |
J -
Journal Article
|
ARLID |
0333424 |
utime |
20240111140730.2 |
mtime |
20091215235959.9 |
WOS |
000271951500003 |
DOI |
10.1109/TIT.2009.2032806 |
title
(primary) (eng) |
Divergence from factorizable distributions and matroid representations by partitions |
specification |
page_count |
7 s. |
media_type |
www |
|
serial |
ARLID |
cav_un_epca*0256723 |
ISSN |
0018-9448 |
title
|
IEEE Transactions on Information Theory |
volume_id |
55 |
volume |
12 (2009) |
page_num |
5375-5381 |
publisher |
name |
Institute of Electrical and Electronics Engineers |
|
|
title
(cze) |
Divergence faktorizačních distribucí a matroidy reprezentované parciálností |
keyword |
Information divergence |
keyword |
relative entropy |
keyword |
Shannon entropy |
keyword |
exponential family |
keyword |
hierarchical model |
keyword |
log-linear model |
keyword |
contingency table |
keyword |
Gibbs distribution |
keyword |
matroid representation |
keyword |
secret sharing scheme |
keyword |
maximum likelihood. |
author
(primary) |
ARLID |
cav_un_auth*0101161 |
name1 |
Matúš |
name2 |
František |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
IAA100750603 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0216427 |
|
project |
project_id |
GA201/04/0393 |
agency |
GA ČR |
ARLID |
cav_un_auth*0001808 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
Maximization of the information divergence from any hierarchical log-linear model is studied. A new upper bound on the maximum is presented and its tightness analyzed. For the models given by the bases of a matroid, the latter is related to matroid representations by partitions or, equivalently, to ideal secret sharing schemes. A new link between the divergence maximization, the maximum likelihood principle and secret sharing is established. |
abstract
(cze) |
Byla studována maximalizace informační divergence od hierarchických log-lineárních modelů. Byl nalezen nový odhad na maximum a diskutována jeho těsnost. Ta je v úzké souvislosti s reprezentacemi matroidů rozklady. Výsledky umožňují novou interpretaci ideálních schemat sdílení tajemství v kryptografii pomocí principu maximální věrohodnosti. |
reportyear |
2010 |
RIV |
BA |
num_of_auth |
1 |
permalink |
http://hdl.handle.net/11104/0178409 |
mrcbT16-f |
3.936 |
mrcbT16-g |
0.359 |
mrcbT16-h |
9.3 |
mrcbT16-i |
0.0751 |
mrcbT16-j |
1.782 |
mrcbT16-k |
25950 |
mrcbT16-l |
429 |
mrcbT16-q |
176 |
mrcbT16-s |
6.621 |
mrcbT16-y |
25.99 |
mrcbT16-x |
3.79 |
arlyear |
2009 |
mrcbU34 |
000271951500003 WOS |
mrcbU56 |
pdf |
mrcbU63 |
cav_un_epca*0256723 IEEE Transactions on Information Theory 0018-9448 1557-9654 Roč. 55 č. 12 2009 5375 5381 Institute of Electrical and Electronics Engineers |
|