bibtype C - Conference Paper (international conference)
ARLID 0339845
utime 20240111140736.8
mtime 20100302235959.9
title (primary) (eng) A Cyclostationarity Analysis Applied to Scaled Images
specification
page_count 8 s.
media_type www
serial
ARLID cav_un_epca*0333960
ISBN 978-3-642-10682-8
title Neural Information Processing
page_num 683-690
publisher
place Berlin
name Springer
year 2009
editor
name1 Leung
name2 C.S.
editor
name1 Lee
name2 M.
editor
name1 Chan
name2 J.H.
keyword Interpolation
keyword scaling
keyword cyclostationary
keyword authentication
keyword image forensics
author (primary)
ARLID cav_un_auth*0101189
name1 Saic
name2 Stanislav
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0206076
name1 Mahdian
name2 Babak
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2010/ZOI/babak-a cyclostationarity analysis applied to scaled images.pdf
cas_special
project
project_id GA102/08/0470
agency GA ČR
ARLID cav_un_auth*0239565
research CEZ:AV0Z10750506
abstract (eng) The knowledge of image’s geometric history plays an important role in image signal compression, image registration, image retrieval and especially in image forensics. In this paper we focus on scaling and show that images that have undergone scaling contain hidden cyclostationary features. This makes possible employing the well–developed theory and efficient methods of cyclostationarity for a blind analyzing of the history of images in respect to scaling transformation. To verify this, we also propose a cyclostationarity detection method applied to our problem and show how the traces of scaling can be detected and the specific parameters of the transformation estimated. The method is based on the fact that a cyclostationary signal has a frequency spectrum correlated with a shifted version of itself. A quantitative measure of the efficiency of the method is proposed as well.
action
ARLID cav_un_auth*0257132
name ICONIP 2009. International Conference on Neural Information Processing /16./
place Bangkok
dates 01.12.2009-05.12.2009
country TH
reportyear 2010
RIV IN
permalink http://hdl.handle.net/11104/0183248
arlyear 2009
mrcbU56 pdf
mrcbU63 cav_un_epca*0333960 Neural Information Processing 978-3-642-10682-8 683 690 Berlin Springer 2009 Lecture Notes in Computer Science 5864
mrcbU67 Leung C.S. 340
mrcbU67 Lee M. 340
mrcbU67 Chan J.H. 340