bibtype M - Monography Chapter
ARLID 0340465
utime 20240111140737.1
mtime 20100310235959.9
WOS 000275281800011
DOI 10.1007/978-3-642-10707-8
title (primary) (eng) Chaos Synthesis by Evolutionary Algorithms
specification
page_count 38 s.
book_pages 521
serial
ARLID cav_un_epca*0340151
ISBN 978-3-642-10706-1
ISSN 1860-949X
title Evolutionary Algorithms and Chaotic Systems
page_num 345-382
publisher
place Berlin
name Springer-Verlag
year 2010
editor
name1 Zelinka
name2 I.
editor
name1 Čelikovský
name2 S.
editor
name1 Richter
name2 H.
editor
name1 Chen
name2 G.
keyword chaos synthesis
keyword evolutionary algorithms
keyword self organizingmigrating
keyword evolutionary computing
author (primary)
ARLID cav_un_auth*0237374
name1 Zelinka
name2 I.
country CZ
author
ARLID cav_un_auth*0243483
name1 Chen
name2 G.
country CN
author
ARLID cav_un_auth*0101074
name1 Čelikovský
name2 Sergej
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
institution UTIA-B
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf soubor
cas_special
research CEZ:AV0Z10750506
abstract (eng) This chapter introduces the notion of chaos synthesis by means of evolutionary algorithms and develops a new method for chaotic systems synthesis. This method is similar to genetic programming and grammatical evolution and is applied alongside evolutionary algorithms: differential evolution, self organizingmigrating, genetic algorithm, simulated annealing and evolutionary strategies. The aim of this investigation is to synthesize new and “simple” chaotic systems based on some elements contained in a pre-chosen existing chaotic system and a properly defined cost function. The investigation consists of two case studies based on the aforementioned evolutionary algorithms in various versions. For all algorithms, 100 simulations of chaos synthesis were repeated and then averaged to guarantee the reliability and robustness of the proposed method. The most significant results are carefully selected, visualized and commented in this chapter.
reportyear 2010
RIV BC
permalink http://hdl.handle.net/11104/0183688
arlyear 2010
mrcbU34 000275281800011 WOS
mrcbU56 pdf soubor
mrcbU63 cav_un_epca*0340151 Evolutionary Algorithms and Chaotic Systems 978-3-642-10706-1 1860-949X 345 382 Berlin Springer-Verlag 2010 Studies in Computational Intelligence 267
mrcbU67 Zelinka I. 340
mrcbU67 Čelikovský S. 340
mrcbU67 Richter H. 340
mrcbU67 Chen G. 340