bibtype C - Conference Paper (international conference)
ARLID 0341554
utime 20240111140738.7
mtime 20100325235959.9
title (primary) (eng) Improving Sequential Feature Selection Methods Performance by Means of Hybridization
specification
page_count 10 s.
media_type www
serial
ARLID cav_un_epca*0341553
ISBN 978-0-88986-830-4
title Proc. 6th IASTED Int. Conf. on Advances in Computer Science and Engineering
publisher
place Calgary
name ACTA Press
year 2010
editor
name1 Rafea
keyword Feature selection
keyword sequential search
keyword hybrid methods
keyword classification performance
keyword subset search
keyword statistical pattern recognition
author (primary)
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101182
name1 Pudil
name2 Pavel
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type PDF
url http://library.utia.cas.cz/separaty/2010/RO/somol-improving sequential feature selection methods performance by means of hybridization.pdf
source_size 942kb
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
research CEZ:AV0Z10750506
abstract (eng) In this paper we propose the general scheme of defining hybrid feature selection algorithms based on standard sequential search with the aim to improve feature selection performance, especially on high-dimensional or large-sample data. We show experimentally that “hybridization” has not only the potential to dramatically reduce FS search time, but in some cases also to actually improve classifier generalization, i.e., its classification performance on previously unknown data.
action
ARLID cav_un_auth*0261288
name Advances in Computer Science and Engineering
place Sharm El Sheikh
dates 15.03.2010-17.03.2010
country EG
reportyear 2011
RIV BD
permalink http://hdl.handle.net/11104/0184495
arlyear 2010
mrcbU56 PDF 942kb
mrcbU63 cav_un_epca*0341553 Proc. 6th IASTED Int. Conf. on Advances in Computer Science and Engineering 978-0-88986-830-4 689-1-689-10 Proc. 6th IASTED Int. Conf. on Advances in Computer Science and Engineering Calgary ACTA Press 2010
mrcbU67 Rafea 340