bibtype C - Conference Paper (international conference)
ARLID 0341899
utime 20240103193406.5
mtime 20100413235959.9
title (primary) (eng) A Cyclostationarity Analysis Applied to Image Forensics
specification
page_count 6 s.
media_type CD
serial
ARLID cav_un_epca*0341898
ISBN 978-1-4244-5498-3
ISSN 1550-5790
title Proceedings of IEEE Workshop on Applications of Computer Vision (WACV 2009).
page_num 279-284
publisher
place Piscataway
name IEEE
year 2009
keyword cyclostationarity
keyword image processing
keyword image forgery
keyword image forensics
author (primary)
ARLID cav_un_auth*0101189
name1 Saic
name2 Stanislav
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0206076
name1 Mahdian
name2 Babak
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2010/ZOI/saic-a%20cyclostationarity%20analysis%20applied%20to%20image%20forensics.pdf
cas_special
project
project_id GA102/08/0470
agency GA ČR
ARLID cav_un_auth*0239565
research CEZ:AV0Z10750506
abstract (eng) The processing history of images plays an important role in many fields of digital image processing and computer vision. In this paper, we focus on geometrical transformations and show that images that have undergone such transformations contain hidden cyclostationary features. This makes possible employing the well–developed theory and efficient methods of cyclostationarity for blind analyzing of history of images in respect to geometrical transformations. To verify this, we also propose a cyclostationarity detection method and show how the traces of geometrical transformations in an image can be detected and the specific parameters of the transformation estimated. The method is based on the fact that a cyclostationary signal has a frequency spectrum correlated with a shifted version of itself.
action
ARLID cav_un_auth*0261413
name 2009 IEEE Workshop on Applications of Computer Vision (WACV 2009)
place SnowBird Utah
dates 07.12. 2009-09.12.2009
country US
reportyear 2011
RIV IN
permalink http://hdl.handle.net/11104/0184749
arlyear 2009
mrcbU63 cav_un_epca*0341898 Proceedings of IEEE Workshop on Applications of Computer Vision (WACV 2009). 978-1-4244-5498-3 1550-5790 279 284 Piscataway IEEE 2009