bibtype J - Journal Article
ARLID 0342595
utime 20240103193448.3
mtime 20100521235959.9
SCOPUS 77949408057
WOS 000275920200006
DOI 10.1198/TECH.2009.08104
title (primary) (eng) Online Prediction under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill
specification
page_count 15 s.
serial
ARLID cav_un_epca*0255201
ISSN 0040-1706
title Technometrics
page_num 52-66
keyword prediction
keyword rolling mills
keyword Bayesian Dynamic Averaging
author (primary)
ARLID cav_un_auth*0237107
name1 Raftery
name2 A. E.
country US
author
ARLID cav_un_auth*0101124
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
name1 Kárný
name2 Miroslav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0212695
name1 Ettler
name2 P.
country CZ
source
url http://library.utia.cas.cz/separaty/2010/AS/karny-0342595.pdf
cas_special
project
ARLID cav_un_auth*0001814
project_id 1M0572
agency GA MŠk
project
ARLID cav_un_auth*0261683
project_id 7D09008
agency GA MŠk
country CZ
research CEZ:AV0Z10750506
abstract (eng) We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the "correct" model to vary over time. The state space and Markov chain models are both specied in terms of forgetting, leading to a highly parsimonious representation. As a special case, when the model and parameters do not change, DMA is a recursive implementation of standard Bayesian model averaging, which we call recursive model averaging (RMA). The method is applied to the problem of predicting the output strip thickness for a cold rolling mill, where the output is measured with a time delay.
RIV BC
reportyear 2011
mrcbC52 4 A 4a 20231122134017.2
permalink http://hdl.handle.net/11104/0185291
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-f 1.985
mrcbT16-g 0.206
mrcbT16-h >10.0
mrcbT16-i 0.00558
mrcbT16-j 1.424
mrcbT16-k 4488
mrcbT16-l 34
mrcbT16-s 1.500
mrcbT16-4 Q1
mrcbT16-B 78.067
mrcbT16-C 75.909
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2010
mrcbTft \nSoubory v repozitáři: karny-0342595.pdf
mrcbU14 77949408057 SCOPUS
mrcbU34 000275920200006 WOS
mrcbU63 cav_un_epca*0255201 Technometrics 0040-1706 1537-2723 Volume 52 Number 1 2010 52 66