bibtype |
J -
Journal Article
|
ARLID |
0342729 |
utime |
20240103193456.0 |
mtime |
20100513235959.9 |
WOS |
000277028200005 |
SCOPUS |
77951938848 |
DOI |
10.1007/s00440-009-0214-x |
title
(primary) (eng) |
Survival of contact processes on the hierarchical group |
specification |
|
serial |
ARLID |
cav_un_epca*0254797 |
ISSN |
0178-8051 |
title
|
Probability Theory and Related Fields |
volume_id |
147 |
volume |
3 (2010) |
page_num |
529-563 |
publisher |
|
|
keyword |
contact process |
keyword |
survival |
keyword |
hierarchical group |
keyword |
coupling |
keyword |
renormalization group |
author
(primary) |
ARLID |
cav_un_auth*0261734 |
name1 |
Athreya |
name2 |
S.R. |
country |
IN |
|
author
|
ARLID |
cav_un_auth*0217893 |
name1 |
Swart |
name2 |
Jan M. |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA201/06/1323 |
agency |
GA ČR |
ARLID |
cav_un_auth*0217370 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
We consider contact processes on the hierarchical group, where sites infect other sites at a rate depending on their hierarchical distance, and sites become healthy with a constant recovery rate. If the infection rates decay too fast as a function of the hierarchical distance, then we show that the critical recovery rate is zero. On the other hand, we derive sufficient conditions on the speed of decay of the infection rates for the process to exhibit a nontrivial phase transition between extinction and survival. For our sufficient conditions, we use a coupling argument that compares contact processes on the hierarchical group with freedom two with contact processes on a renormalized lattice. An interesting novelty in this renormalization argument is the use of a result due to Rogers and Pitman on Markov functionals. |
reportyear |
2011 |
RIV |
BA |
mrcbC52 |
4 A 4a 20231122134020.3 |
permalink |
http://hdl.handle.net/11104/0185384 |
mrcbT16-e |
STATISTICSPROBABILITY |
mrcbT16-f |
1.625 |
mrcbT16-g |
0.45 |
mrcbT16-h |
>10.0 |
mrcbT16-i |
0.01202 |
mrcbT16-j |
1.985 |
mrcbT16-k |
2010 |
mrcbT16-l |
60 |
mrcbT16-s |
2.877 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
88.125 |
mrcbT16-C |
77.727 |
mrcbT16-D |
Q1 |
mrcbT16-E |
Q1 |
arlyear |
2010 |
mrcbTft |
\nSoubory v repozitáři: swart-0342729.pdf |
mrcbU14 |
77951938848 SCOPUS |
mrcbU34 |
000277028200005 WOS |
mrcbU63 |
cav_un_epca*0254797 Probability Theory and Related Fields 0178-8051 1432-2064 Roč. 147 č. 3 2010 529 563 Springer |
|