bibtype J - Journal Article
ARLID 0342729
utime 20240103193456.0
mtime 20100513235959.9
WOS 000277028200005
SCOPUS 77951938848
DOI 10.1007/s00440-009-0214-x
title (primary) (eng) Survival of contact processes on the hierarchical group
specification
page_count 35 s.
serial
ARLID cav_un_epca*0254797
ISSN 0178-8051
title Probability Theory and Related Fields
volume_id 147
volume 3 (2010)
page_num 529-563
publisher
name Springer
keyword contact process
keyword survival
keyword hierarchical group
keyword coupling
keyword renormalization group
author (primary)
ARLID cav_un_auth*0261734
name1 Athreya
name2 S.R.
country IN
author
ARLID cav_un_auth*0217893
name1 Swart
name2 Jan M.
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2010/SI/swart-0342729.pdf
cas_special
project
project_id GA201/06/1323
agency GA ČR
ARLID cav_un_auth*0217370
research CEZ:AV0Z10750506
abstract (eng) We consider contact processes on the hierarchical group, where sites infect other sites at a rate depending on their hierarchical distance, and sites become healthy with a constant recovery rate. If the infection rates decay too fast as a function of the hierarchical distance, then we show that the critical recovery rate is zero. On the other hand, we derive sufficient conditions on the speed of decay of the infection rates for the process to exhibit a nontrivial phase transition between extinction and survival. For our sufficient conditions, we use a coupling argument that compares contact processes on the hierarchical group with freedom two with contact processes on a renormalized lattice. An interesting novelty in this renormalization argument is the use of a result due to Rogers and Pitman on Markov functionals.
reportyear 2011
RIV BA
mrcbC52 4 A 4a 20231122134020.3
permalink http://hdl.handle.net/11104/0185384
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-f 1.625
mrcbT16-g 0.45
mrcbT16-h >10.0
mrcbT16-i 0.01202
mrcbT16-j 1.985
mrcbT16-k 2010
mrcbT16-l 60
mrcbT16-s 2.877
mrcbT16-4 Q1
mrcbT16-B 88.125
mrcbT16-C 77.727
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2010
mrcbTft \nSoubory v repozitáři: swart-0342729.pdf
mrcbU14 77951938848 SCOPUS
mrcbU34 000277028200005 WOS
mrcbU63 cav_un_epca*0254797 Probability Theory and Related Fields 0178-8051 1432-2064 Roč. 147 č. 3 2010 529 563 Springer