bibtype J - Journal Article
ARLID 0342804
utime 20240103193459.6
mtime 20100513235959.9
WOS 000278692300009
SCOPUS 77955230142
DOI 10.1016/j.ijar.2010.01.014
title (primary) (eng) A geometric view on learning Bayesian network structures
specification
page_count 14 s.
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 51
volume 5 (2010)
page_num 578-586
publisher
name Elsevier
keyword learning Bayesian networks
keyword standard imset
keyword inclusion neighborhood
keyword geometric neighborhood
keyword GES algorithm
author (primary)
ARLID cav_un_auth*0101202
name1 Studený
name2 Milan
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0261765
name1 Hemmecke
name2 R.
country DE
source
url http://library.utia.cas.cz/separaty/2010/MTR/studeny-0342804.pdf
cas_special
project
project_id IAA100750603
agency GA AV ČR
country CZ
ARLID cav_un_auth*0216427
project
project_id 1M0572
agency GA MŠk
country CZ
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA201/08/0539
agency GA ČR
ARLID cav_un_auth*0239648
research CEZ:AV0Z10750506
abstract (eng) Basic idea of an algebraic approach to learning Bayesian network (BN) structures is to represent every BN structure by a certain (uniquely determined) vector, called a standard imset. The main result of the paper is that the set of standard imsets is the set of vertices of a certain polytope. Motivated by the geometric view, we introduce the concept of the geometric neighborhood for standard imsets, and, consequently, for BN structures. Then we show that it always includes the inclusion neighborhood}, which was introduced earlier in connection with the GES algorithm. The third result is that the global optimum of an affine function over the polytope coincides with the local optimum relative to the geometric neighborhood. The geometric neighborhood in the case of three variables is described and shown to differ from the inclusion neighborhood. This leads to a simple example of the failure of the GES algorithm if data are not ``generated" from a perfectly Markovian distribution.
action
ARLID cav_un_auth*0261766
name PGM 2008
reportyear 2011
RIV BA
mrcbC52 4 A 4a 20231122134022.4
permalink http://hdl.handle.net/11104/0185432
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-f 1.720
mrcbT16-g 0.222
mrcbT16-h 5.5
mrcbT16-i 0.00415
mrcbT16-j 0.521
mrcbT16-k 1384
mrcbT16-l 63
mrcbT16-s 1.454
mrcbT16-4 Q1
mrcbT16-B 55.614
mrcbT16-C 65.278
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2010
mrcbTft \nSoubory v repozitáři: studeny-0342804.pdf
mrcbU14 77955230142 SCOPUS
mrcbU34 000278692300009 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 51 č. 5 2010 578 586 Elsevier