bibtype M - Monography Chapter
ARLID 0342820
utime 20240103193500.1
mtime 20100513235959.9
title (primary) (eng) Efficient Feature Subset Selection and Subset Size Optimization
specification
page_count 23 s.
book_pages 524
serial
ARLID cav_un_epca*0342819
ISBN 978-953-7619-90-9
title Pattern Recognition, Recent Advances
page_num 75-98
publisher
place Vukovar, Croatia
name In-Teh
year 2010
editor
name1 Herout
name2 A.
keyword dimensionality reduction
keyword pattern recognition
keyword machine learning
keyword feature selection
keyword optimization
keyword subset search
keyword classification
author (primary)
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101182
name1 Pudil
name2 Pavel
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2010/RO/somol-efficient feature subset selection and subset size optimization.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
research CEZ:AV0Z10750506
abstract (eng) A broad class of decision-making problems can be solved by learning approach. This can be a feasible alternative when neither an analytical solution exists nor the mathematical model can be constructed. In these cases the required knowledge can be gained from the past data which form the so-called learning or training set. Then the formal apparatus of statistical pattern recognition can be used to learn the decision-making. The first and essential step of statistical pattern recognition is to solve the problem of feature selection (FS) or more generally dimensionality reduction (DR). The chapter summarizes the state of art in feature selection, addressing key topics including: FS categorization, FS criteria, FS search strategies, FS stability.
reportyear 2011
RIV BD
permalink http://hdl.handle.net/11104/0185446
arlyear 2010
mrcbU63 cav_un_epca*0342819 Pattern Recognition, Recent Advances 978-953-7619-90-9 75 98 Vukovar, Croatia In-Teh 2010
mrcbU67 Herout A. 340