| bibtype |
J -
Journal Article
|
| ARLID |
0342828 |
| utime |
20240103193501.8 |
| mtime |
20101209235959.9 |
| WOS |
000276360100004 |
| SCOPUS |
77952097856 |
| DOI |
10.1007/s00153-010-0174-y |
| title
(primary) (eng) |
Quotients of Boolean algebras and regular subalgebras |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0256186 |
| ISSN |
0933-5846 |
| title
|
Archive for Mathematical Logic |
| volume_id |
49 |
| volume |
3 (2010) |
| page_num |
329-342 |
| publisher |
|
|
| keyword |
Boolean algebra |
| keyword |
sequential topology |
| keyword |
ZFC extension |
| keyword |
ideal |
| author
(primary) |
| ARLID |
cav_un_auth*0100647 |
| name1 |
Balcar |
| name2 |
Bohuslav |
| full_dept (cz) |
Matematická logika a teoretická informatika |
| full_dept (eng) |
Mathematical Logic and Theoretical Computer Science |
| department (eng) |
MLTCS |
| institution |
MU-W |
| full_dept |
Mathematical Logic and Theoretical Computer Science |
| fullinstit |
Matematický ústav AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0214086 |
| name1 |
Pazák |
| name2 |
Tomáš |
| full_dept (cz) |
Stochastická informatika |
| full_dept |
Department of Stochastic Informatics |
| department (cz) |
SI |
| department |
SI |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| project |
| project_id |
IAA100190509 |
| agency |
GA AV ČR |
| ARLID |
cav_un_auth*0000975 |
|
| project |
| project_id |
MEB060909 |
| agency |
GA MŠk |
| ARLID |
cav_un_auth*0252862 |
|
| research |
CEZ:AV0Z10190503 |
| research |
CEZ:AV0Z10750506 |
| abstract
(eng) |
Let B and C be Boolean algebras and e : B -> C an embedding. We examine the hierarchy of ideals on C for which (e) over bar : B -> C/I is a regular (i.e. complete) embedding. As an application we deal with the interrelationship between P(omega)/fin in the ground model and in its extension. If M is an extension of V containing a new subset of omega, then in M there is an almost disjoint refinement of the family ([omega](omega))(V). Moreover, there is, in M, exactly one ideal I on omega such that (P(omega)/fin)(V) is a dense subalgebra of (P(omega)/I)(M) if and only if M does not contain an independent (splitting) real. We show that for a generic extension V[G], the canonical embedding P-V(omega)/fin hooked right arrow P(omega)/(U(Os)(B))(G) is a regular one, where U(Os)(B) is the Urysohn closure of the zero-convergence structure on B. |
| reportyear |
2011 |
| RIV |
BA |
| mrcbC52 |
4 R 4r 20231122134022.7 |
| permalink |
http://hdl.handle.net/11104/0185452 |
| mrcbT16-j |
0.425 |
| mrcbT16-s |
0.550 |
| mrcbT16-4 |
Q1 |
| mrcbT16-B |
25.124 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q1 |
| arlyear |
2010 |
| mrcbTft |
\nSoubory v repozitáři: Balcar.pdf |
| mrcbU14 |
77952097856 SCOPUS |
| mrcbU34 |
000276360100004 WOS |
| mrcbU63 |
cav_un_epca*0256186 Archive for Mathematical Logic 0933-5846 1432-0665 Roč. 49 č. 3 2010 329 342 Springer |
|