bibtype J - Journal Article
ARLID 0343525
utime 20240111140740.2
mtime 20100830235959.9
WOS 000280385600015
SCOPUS 77955303263
DOI 10.1016/j.physa.2010.05.025
title (primary) (eng) On Hurst exponent estimation under heavy-tailed distributions
specification
page_count 20 s.
media_type www
serial
ARLID cav_un_epca*0257423
ISSN 0378-4371
title Physica. A : Statistical Mechanics and its Applications
volume_id 389
volume 18 (2010)
page_num 3844-3855
publisher
name Elsevier
keyword high frequency data analysis
keyword heavy tails
keyword Hurst exponent
author (primary)
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0256902
name1 Krištoufek
name2 Ladislav
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2010/E/barunik-0343525.pdf
cas_special
project
project_id 118310
agency GA UK
country CZ
ARLID cav_un_auth*0274537
project
project_id GA402/09/0965
agency GA ČR
ARLID cav_un_auth*0253176
project
project_id 46108
agency GA UK
country CZ
research CEZ:AV0Z10750506
abstract (eng) In this paper, we show how the sampling properties of Hurst exponent methods of estimation change with the presence of heavy tails. We run extensive Monte Carlo simulations to find out how rescaled range anal- ysis (R/S), multifractal detrended fluctuation analysis (MF − DFA), detrending moving average (DMA) and generalized Hurst exponent ap- proach (GHE) estimate Hurst exponent on independent series with dif- ferent heavy tails. For this purpose, we generate independent random series from stable distribution with stability exponent α changing from 1.1 (heaviest tails) to 2 (Gaussian normal distribution) and we estimate Hurst exponent using the different methods. R/S and GHE prove to be robust to heavy tails in the underlying process. GHE provides the low- est variance and bias in comparison to the other methods regardless the presence of heavy tails in data and sample size.
reportyear 2011
RIV AH
mrcbC52 4 A 4a 20231122134044.8
permalink http://hdl.handle.net/11104/0185985
mrcbT16-e PHYSICSMULTIDISCIPLINARY
mrcbT16-f 1.467
mrcbT16-g 0.382
mrcbT16-h 6.7
mrcbT16-i 0.0383
mrcbT16-j 0.52
mrcbT16-k 13244
mrcbT16-l 617
mrcbT16-q 87
mrcbT16-s 0.881
mrcbT16-y 31.56
mrcbT16-x 1.74
mrcbT16-4 Q2
mrcbT16-B 45.662
mrcbT16-C 66.875
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2010
mrcbTft \nSoubory v repozitáři: barunik-0343525.pdf
mrcbU14 77955303263 SCOPUS
mrcbU34 000280385600015 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0257423 Physica. A : Statistical Mechanics and its Applications 0378-4371 1873-2119 Roč. 389 č. 18 2010 3844 3855 Elsevier