bibtype J - Journal Article
ARLID 0345450
utime 20240103193650.7
mtime 20110816235959.9
WOS 000293961900002
SCOPUS 80053895602
DOI 10.1007/s00138-010-0251-6
title (primary) (eng) Dynamic texture as foreground and background
specification
page_count 10 s.
serial
ARLID cav_un_epca*0254218
ISSN 0932-8092
title Machine Vision and Applications
volume_id 22
volume 5 (2011)
page_num 741-750
publisher
name Springer
keyword Dynamic texture
keyword Optical flow
keyword SVD
author (primary)
ARLID cav_un_auth*0216372
name1 Chetverikov
name2 D.
country HU
author
ARLID cav_un_auth*0273706
name1 Fazekas
name2 S.
country HU
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2011/RO/haindl-0345450.pdf
cas_special
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
project
project_id 507752
country XE
agency EC
ARLID cav_un_auth*0200689
research CEZ:AV0Z10750506
abstract (eng) Depending on application, temporal texture can be viewed as either foreground or background. We address two related problems: finding regions of dynamic texture in a video and detecting moving targets in a dynamic texture. We propose efficient and fast methods for both cases. The methods can be potentially used in real-time applications of machine vision. First, we show how the optical flow residual can be used to find dynamic texture in video. The algorithm is a practical, real-time simplification of the sophisticated and powerful but time-consuming method (Fazekas et al. in Int J Comput Vis 82:48–63, 2009). We give numerous examples of detecting and segmenting fire, smoke, water and other dynamic textures in real-world videos acquired by static and moving cameras. Then we apply the singular value decomposition (SVD) to a temporal data window in a video to detect targets in dynamic texture via the residual of the largest singular value.
reportyear 2012
RIV BD
mrcbC52 4 A 4a 20231122134102.9
permalink http://hdl.handle.net/11104/0186722
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|COMPUTERSCIENCECYBERNETICS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 1.324
mrcbT16-g 0.132
mrcbT16-h 7.6
mrcbT16-i 0.00254
mrcbT16-j 0.669
mrcbT16-k 711
mrcbT16-l 76
mrcbT16-s 0.501
mrcbT16-4 Q1
mrcbT16-B 60.988
mrcbT16-C 44.225
mrcbT16-D Q2
mrcbT16-E Q3
arlyear 2011
mrcbTft \nSoubory v repozitáři: haindl-0345450.pdf
mrcbU14 80053895602 SCOPUS
mrcbU34 000293961900002 WOS
mrcbU63 cav_un_epca*0254218 Machine Vision and Applications 0932-8092 1432-1769 Roč. 22 č. 5 2011 741 750 Springer