bibtype J - Journal Article
ARLID 0346165
utime 20240903170621.7
mtime 20100914235959.9
WOS 000280425000011
title (primary) (eng) Empirical Estimates in Stochastic Optimization via Distribution Tails
specification
page_count 13 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 46
volume 3 (2010)
page_num 459-471
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword Stochastic programming problems
keyword Stability
keyword Wasserstein metric
keyword L_1 norm
keyword Lipschitz property
keyword Empirical estimates
keyword Convergence rate
keyword Exponential tails
keyword Heavy tails
keyword Pareto distribution
keyword Risk functional
keyword Empirical quantiles
author (primary)
ARLID cav_un_auth*0101122
name1 Kaňková
name2 Vlasta
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
garant G
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http:library.utia.cas.cz/separaty/2010/E/kankova-empirical estimates in stochastic optimization via distribution tails.pdf
cas_special
project
project_id GA402/07/1113
agency GA ČR
ARLID cav_un_auth*0228801
project
project_id GA402/08/0107
agency GA ČR
country CZ
ARLID cav_un_auth*0240545
project
project_id LC06075
agency GA MŠk
country CZ
ARLID cav_un_auth*0227048
research CEZ:AV0Z10750506
abstract (eng) Classical optimization problems depending on a probability measure belong mostly to nonlinear deterministic problems that are, from the numerical point of view, relatively complicated. On the other hand, these problems fulfil very often assumptions giving a possibility to replace the ``underlying" probability measure by an empirical one to obtain ``good" empirical estimates of the optimal value and the optimal solution. Convergence rate of these estimates have been studied mostly for ``underlying" probability measure with suitable (thin) tails. However it is known that probability distributions with heavy tails better correspond to many economic problems. The paper focus on distributions with finite first moments and heavy tails. The introduced assertions are based on the stability results corresponding to the Wasserstein metric with an ``underlying" l_1 norm and empirical quantiles convergence.
action
ARLID cav_un_auth*0263053
name International Conference on Mathematical Methods in Economy and Industry
place České Budějovice
dates 15.06.2009-18.06.2009
country CZ
reportyear 2011
RIV BB
mrcbC52 4 O 4o 20231122134115.4
permalink http://hdl.handle.net/11104/0187260
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-f 0.562
mrcbT16-g 0.219
mrcbT16-h 8.1
mrcbT16-i 0.00125
mrcbT16-j 0.22
mrcbT16-k 463
mrcbT16-l 73
mrcbT16-q 21
mrcbT16-s 0.323
mrcbT16-y 20.57
mrcbT16-x 0.48
mrcbT16-4 Q2
mrcbT16-B 27.15
mrcbT16-C 23.684
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2010
mrcbTft \nSoubory v repozitáři: 0346165.pdf
mrcbU34 000280425000011 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 46 č. 3 2010 459 471 Ústav teorie informace a automatizace AV ČR, v. v. i.