bibtype C - Conference Paper (international conference)
ARLID 0346556
utime 20240103193758.7
mtime 20100913235959.9
WOS 000286412900041
SCOPUS 77958510730
DOI 10.1007/978-3-642-14980-1_41
title (primary) (eng) A Psychophysical Evaluation of Texture Degradation Descriptors
specification
page_count 11 s.
serial
ARLID cav_un_epca*0346555
ISBN 978-3-642-14979-5
ISSN 0302-9743
title Structural, Syntactic, and Statistical Pattern Recognition
page_num 423-433
publisher
place Berlin / Heidelberg
name Springer Berlin / Heidelberg
year 2010
editor
name1 Hancock, Edwin and Wilson, Richard and Windeatt, Terry and Ulusoy, Ilkay and Escolano, Francisco
keyword texture
keyword degradation
keyword statistical features
keyword BTF
keyword psychophysics
author (primary)
ARLID cav_un_auth*0101086
name1 Filip
name2 Jiří
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213290
name1 Vácha
name2 Pavel
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0245455
name1 Green
name2 P.R.
country GB
source
url http://library.utia.cas.cz/separaty/2010/RO/filip-a psychophysical evaluation of texture degradation descriptors.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id ERG 239294
agency EC Marie Curie
country BE
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
research CEZ:AV0Z10750506
abstract (eng) Delivering a digital realistic appearance of materials is one of the most difficult tasks of computer vision. Accurate representation of surface texture can be obtained by means of view and illumination dependent textures. However, this kind of appearance representation produces massive datasets so their compression is inevitable. For optimal visual performance of compression methods, their parameters should be set dependently on the actual material. We propose a set of statistical descriptors motivated by standard textural features, and psychophysically evaluate their performance on three subtle artificial texture visual degradations. We tested the five types of descriptors on five different textures and combination of thirteen surface shapes and two illuminations. We have found that descriptors based on two-dimensional causal auto-regressive model, have the highest correlation with the psychophysical results.
action
ARLID cav_un_auth*0263645
name Structural, Syntactic, and Statistical Pattern Recognition
place Cesme, Izmir
dates 18.08.2010-20.08.2010
country TR
reportyear 2011
RIV BD
permalink http://hdl.handle.net/11104/0187557
mrcbT16-q 100
mrcbT16-s 0.318
mrcbT16-y 16.31
mrcbT16-x 0.34
arlyear 2010
mrcbU14 77958510730 SCOPUS
mrcbU34 000286412900041 WOS
mrcbU63 cav_un_epca*0346555 Structural, Syntactic, and Statistical Pattern Recognition 978-3-642-14979-5 0302-9743 423 433 Berlin / Heidelberg Springer Berlin / Heidelberg 2010 LNCS 6218
mrcbU67 Hancock, Edwin and Wilson, Richard and Windeatt, Terry and Ulusoy, Ilkay and Escolano, Francisco 340