bibtype J - Journal Article
ARLID 0349571
utime 20240103194122.5
mtime 20101118235959.9
WOS 000285445800009
DOI 10.1016/j.chaos.2010.09.001
title (primary) (eng) On spurious anti-persistence in the US stock indices
specification
page_count 11 s.
serial
ARLID cav_un_epca*0252408
ISSN 0960-0779
title Chaos Solitons & Fractals
volume_id 43
volume 1 (2010)
page_num 68-78
publisher
name Elsevier
keyword econophysics
keyword long-range dependence
author (primary)
ARLID cav_un_auth*0256902
name1 Krištoufek
name2 Ladislav
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2010/E/kristoufek-on spurious anti-persistence in the us stock indices.pdf
cas_special
project
project_id 118310
agency GA UK
country CZ
ARLID cav_un_auth*0274537
project
project_id GD402/09/H045
agency GA ČR
ARLID cav_un_auth*0253998
project
project_id GA402/09/0965
agency GA ČR
ARLID cav_un_auth*0253176
research CEZ:AV0Z10750506
abstract (eng) We reexamine the results of Serletis and Rosenberg [Serletis A, Rosenberg A. Mean rever- sion in the US stock market. Chaos, Solitons and Fractals 2009;40:2007–2015.] who claim that the returns of the most important US stock indices (DJI, NASDAQ, NYSE and S&P500) are strongly anti-persistent and thus mean reverting. We apply various methods to detect long-range dependence – detrending moving average, detrended fluctuation analysis, gen- eralized Hurst exponent approach, classical rescaled range analysis and modified rescaled range analysis. We show that there are no signs of anti-persistence in any of the indices. Moreover, we discuss that the authors did not find any anti-persistence but rather showed returns of the said assets do not follow the scaling power law around their moving average with varying window length. Anti-persistence is thus spurious and due to wrong applica- tion of detrending moving average method.
reportyear 2011
RIV AH
num_of_auth 1
permalink http://hdl.handle.net/11104/0189771
mrcbT16-e MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|PHYSICSMATHEMATICAL|PHYSICSMULTIDISCIPLINARY
mrcbT16-f 1.729
mrcbT16-g 0.083
mrcbT16-h 4.6
mrcbT16-i 0.03941
mrcbT16-j 0.538
mrcbT16-k 9415
mrcbT16-l 12
mrcbT16-q 93
mrcbT16-s 1.062
mrcbT16-y 25.17
mrcbT16-x 1.69
mrcbT16-4 Q2
mrcbT16-B 42.68
mrcbT16-C 60.060
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2010
mrcbU34 000285445800009 WOS
mrcbU63 cav_un_epca*0252408 Chaos Solitons & Fractals 0960-0779 1873-2887 Roč. 43 č. 1 2010 68 78 Elsevier