bibtype C - Conference Paper (international conference)
ARLID 0350163
utime 20240103194203.0
mtime 20101129235959.9
WOS 000290245400004
DOI 10.1007/978-3-642-15825-4_4
title (primary) (eng) Computational Properties of Probabilistic Neural Networks
specification
page_count 10 s.
serial
ARLID cav_un_epca*0350162
ISBN 978-3-642-15818-6
title Artificial Neural Networks – ICANN 2010
part_title Part III
page_num 31-40
publisher
place Berlin Heidelberg
name Springer Verlag
year 2010
editor
name1 Diamantaras
name2 K.
editor
name1 Duch
name2 Wlodzislaw
editor
name1 Iliadis
name2 L.S.
keyword Probabilistic neural networks
keyword Statistical pattern recognition
keyword Subspace approach
keyword Overfitting reduction
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0230019
name1 Hora
name2 Jan
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2010/RO/grim-computational properties of probabilistic neural networks.pdf
cas_special
project
project_id GA102/07/1594
agency GA ČR
ARLID cav_un_auth*0228611
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) We discuss the problem of overfitting of probabilistic neural networks in the framework of statistical pattern recognition. The probabilistic approach to neural networks provides a statistically justified subspace method of classification. The underlying structural mixture model includes binary structural parameters and can be optimized by EM algorithm in full generality. Formally, the structural model reduces the number of parameters included and therefore the structural mixtures become less complex and less prone to overfitting. We illustrate how recognition accuracy and the effect of overfitting is influenced by mixture complexity and by the size of training data set.
action
ARLID cav_un_auth*0262947
name ICANN 2010. International Conference on Artificial Neural Networks /20./
place Thessaloniki
dates 15.09.2010-18.09.2010
country GR
reportyear 2011
RIV IN
permalink http://hdl.handle.net/11104/0190237
arlyear 2010
mrcbU34 000290245400004 WOS
mrcbU63 cav_un_epca*0350162 Artificial Neural Networks – ICANN 2010 Part III 978-3-642-15818-6 31 40 Berlin Heidelberg Springer Verlag 2010 Lecture Notes in Computer Science Volume 6354 LNCS
mrcbU67 Diamantaras K. 340
mrcbU67 Duch Wlodzislaw 340
mrcbU67 Iliadis L.S. 340