bibtype J - Journal Article
ARLID 0353652
utime 20250303095124.5
mtime 20110107235959.9
WOS 000286637200006
title (primary) (eng) Efficient algorithms for conditional independence inference
specification
page_count 27 s.
serial
ARLID cav_un_epca*0255947
ISSN 1532-4435
title Journal of Machine Learning Research
volume_id 11
volume 1 (2010)
page_num 3453-3479
publisher
name Microtome Publ
keyword conditional independence inference
keyword linear programming approach
author (primary)
ARLID cav_un_auth*0268027
name1 Bouckaert
name2 R.
country NZ
author
ARLID cav_un_auth*0261765
name1 Hemmecke
name2 R.
country DE
author
ARLID cav_un_auth*0268009
name1 Lindner
name2 S.
country DE
author
ARLID cav_un_auth*0101202
name1 Studený
name2 Milan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2010/MTR/studeny-efficient algorithms for conditional independence inference.pdf
cas_special
project
project_id GA201/08/0539
agency GA ČR
ARLID cav_un_auth*0239648
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) The topic of the paper is computer testing of (probabilistic) conditional independence (CI) implications by an algebraic method of structural imsets. The basic idea is to transform CI statements into certain integral vectors and to verify by a computer the corresponding algebraic relation between the vectors, called the independence implication. The main contribution of the paper is a new method, based on linear programming (LP), which overcomes the limitation of former methods to the number of involved variables. The computational experiments, described in the paper, also show that the new method is faster than the previous ones.
reportyear 2011
RIV BA
permalink http://hdl.handle.net/11104/0192831
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-f 4.967
mrcbT16-g 0.456
mrcbT16-h 6.1
mrcbT16-i 0.02175
mrcbT16-j 2.448
mrcbT16-k 4766
mrcbT16-l 114
mrcbT16-s 1.282
mrcbT16-4 Q1
mrcbT16-B 96.556
mrcbT16-C 95.278
mrcbT16-D Q1*
mrcbT16-E Q1
arlyear 2010
mrcbU34 000286637200006 WOS
mrcbU63 cav_un_epca*0255947 Journal of Machine Learning Research 1532-4435 Roč. 11 č. 1 2010 3453 3479 Microtome Publ