bibtype J - Journal Article
ARLID 0356042
utime 20240103194817.0
mtime 20110208235959.9
WOS 000286832900002
DOI 10.1007/s11228-010-0158-4
title (primary) (eng) On Optimality Conditions in Control of Elliptic Variational Inequalities
specification
page_count 20 s.
serial
ARLID cav_un_epca*0343967
ISSN 1877-0533
title Set-Valued and Variational Analysis
volume_id 19
volume 1 (2011)
page_num 23-42
publisher
name Springer
keyword Directional differentiability
keyword Critical cone
keyword Strong local fuzzy sum rule
keyword Calmness
keyword Capacity
author (primary)
ARLID cav_un_auth*0101173
name1 Outrata
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0100666
name1 Jarušek
name2 Jiří
full_dept (cz) Evoluční diferenciální rovnice
full_dept Evolution Differential Equations
department EDE
institution MU-W
full_dept Evolution Differential Equations
fullinstit Matematický ústav AV ČR, v. v. i.
author
ARLID cav_un_auth*0045840
name1 Stará
name2 J.
country CZ
cas_special
project
project_id IAA100750802
agency GA AV ČR
ARLID cav_un_auth*0241214
project
project_id GA201/09/0917
agency GA ČR
ARLID cav_un_auth*0254029
research CEZ:AV0Z10750506
research CEZ:AV0Z10190503
abstract (eng) In the paper we consider optimal control of a class of strongly monotone variational inequalities, whose solution map is directionally differentiable in the control variable. This property is used to derive sharp pointwise necessary optimality conditions provided we do not impose any control or state constraints. In presence of such constraints we make use of the generalized differential calculus and derive, under a mild constraint qualification, optimality conditions in a “fuzzy” form. For strings, these conditions may serve as an intermediate step toward pointwise conditions of limiting (Mordukhovich) type and in the case of membranes they lead to a variant of Clarke stationarity conditions.
reportyear 2011
RIV BA
mrcbC52 4 R 4r 20231122134435.7
permalink http://hdl.handle.net/11104/0194666
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-f 0.791
mrcbT16-g 0.067
mrcbT16-i 0.00052
mrcbT16-j 0.661
mrcbT16-k 37
mrcbT16-l 30
mrcbT16-s 1.417
mrcbT16-4 Q1
mrcbT16-B 55.047
mrcbT16-C 56.122
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2011
mrcbTft \nSoubory v repozitáři: Jarusek2.pdf
mrcbU34 000286832900002 WOS
mrcbU63 cav_un_epca*0343967 Set-Valued and Variational Analysis 1877-0533 1877-0541 Roč. 19 č. 1 2011 23 42 Springer