bibtype |
J -
Journal Article
|
ARLID |
0356042 |
utime |
20240103194817.0 |
mtime |
20110208235959.9 |
WOS |
000286832900002 |
DOI |
10.1007/s11228-010-0158-4 |
title
(primary) (eng) |
On Optimality Conditions in Control of Elliptic Variational Inequalities |
specification |
|
serial |
ARLID |
cav_un_epca*0343967 |
ISSN |
1877-0533 |
title
|
Set-Valued and Variational Analysis |
volume_id |
19 |
volume |
1 (2011) |
page_num |
23-42 |
publisher |
|
|
keyword |
Directional differentiability |
keyword |
Critical cone |
keyword |
Strong local fuzzy sum rule |
keyword |
Calmness |
keyword |
Capacity |
author
(primary) |
ARLID |
cav_un_auth*0101173 |
name1 |
Outrata |
name2 |
Jiří |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0100666 |
name1 |
Jarušek |
name2 |
Jiří |
full_dept (cz) |
Evoluční diferenciální rovnice |
full_dept |
Evolution Differential Equations |
department |
EDE |
institution |
MU-W |
full_dept |
Evolution Differential Equations |
fullinstit |
Matematický ústav AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0045840 |
name1 |
Stará |
name2 |
J. |
country |
CZ |
|
cas_special |
project |
project_id |
IAA100750802 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0241214 |
|
project |
project_id |
GA201/09/0917 |
agency |
GA ČR |
ARLID |
cav_un_auth*0254029 |
|
research |
CEZ:AV0Z10750506 |
research |
CEZ:AV0Z10190503 |
abstract
(eng) |
In the paper we consider optimal control of a class of strongly monotone variational inequalities, whose solution map is directionally differentiable in the control variable. This property is used to derive sharp pointwise necessary optimality conditions provided we do not impose any control or state constraints. In presence of such constraints we make use of the generalized differential calculus and derive, under a mild constraint qualification, optimality conditions in a “fuzzy” form. For strings, these conditions may serve as an intermediate step toward pointwise conditions of limiting (Mordukhovich) type and in the case of membranes they lead to a variant of Clarke stationarity conditions. |
reportyear |
2011 |
RIV |
BA |
mrcbC52 |
4 R 4r 20231122134435.7 |
permalink |
http://hdl.handle.net/11104/0194666 |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-f |
0.791 |
mrcbT16-g |
0.067 |
mrcbT16-i |
0.00052 |
mrcbT16-j |
0.661 |
mrcbT16-k |
37 |
mrcbT16-l |
30 |
mrcbT16-s |
1.417 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
55.047 |
mrcbT16-C |
56.122 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q2 |
arlyear |
2011 |
mrcbTft |
\nSoubory v repozitáři: Jarusek2.pdf |
mrcbU34 |
000286832900002 WOS |
mrcbU63 |
cav_un_epca*0343967 Set-Valued and Variational Analysis 1877-0533 1877-0541 Roč. 19 č. 1 2011 23 42 Springer |
|