bibtype J - Journal Article
ARLID 0356661
utime 20240903175012.6
mtime 20110228235959.9
WOS 000291717600016
SCOPUS 84907567733
DOI 10.1109/TASL.2010.2049411
title (primary) (eng) Time-Domain Blind Separation of Audio Sources on the Basis of a Complete ICA Decomposition of an Observation Space
specification
page_count 11 s.
serial
ARLID cav_un_epca*0311609
ISSN 1558-7916
title IEEE Transactions on Audio Speech and Language Processing
volume_id 19
volume 2 (2011)
page_num 406-416
keyword blind source separation
keyword audio
keyword speech
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2011/SI/tichavsky-0356661.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GP102/07/P384
agency GAČR
country CZ
ARLID cav_un_auth*0227962
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
research CEZ:AV0Z10750506
abstract (eng) A novel time-domain algorithm for blind separation of audio sources that is based on a complete unconstrained decomposition of the observation space is proposed. The observation space may be defined in a general way, which allows application of long separating filters, although its dimension is low. The decomposition is done by an appropriate independent component analysis (ICA) algorithm giving independent components that are grouped into clusters corresponding to the original sources. Components of the clusters are combined by a reconstruction procedure after estimating responses of the original sources. The authors demonstrate by experiments that the method works effectively with short data, compared to other methods.
reportyear 2011
RIV BI
mrcbC52 4 A 4a 20231122134443.4
permalink http://hdl.handle.net/11104/0195125
mrcbT16-e ACOUSTICS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 1.962
mrcbT16-g 0.305
mrcbT16-h 4.1
mrcbT16-i 0.01048
mrcbT16-j 0.659
mrcbT16-k 1779
mrcbT16-l 203
mrcbT16-s 0.892
mrcbT16-4 Q1
mrcbT16-B 62.973
mrcbT16-C 66.276
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2011
mrcbTft \nSoubory v repozitáři: tichavsky-0356661.pdf
mrcbU14 84907567733 SCOPUS
mrcbU34 000291717600016 WOS
mrcbU63 cav_un_epca*0311609 IEEE Transactions on Audio Speech and Language Processing 1558-7916 1558-7924 Roč. 19 č. 2 2011 406 416