bibtype J - Journal Article
ARLID 0358806
utime 20240103195107.7
mtime 20110601235959.9
WOS 000284600700046
DOI 10.1016/j.amc.2010.10.027
title (primary) (eng) Berwald type inequality for Sugeno integral
specification
page_count 9 s.
serial
ARLID cav_un_epca*0256160
ISSN 0096-3003
title Applied Mathematics and Computation
volume_id 217
volume 8 (2010)
page_num 4100-4108
publisher
name Elsevier
keyword Berwald's inequality
keyword Nonadditive measure
keyword Sugeno integral
author (primary)
ARLID cav_un_auth*0272254
name1 Hamzeh
name2 A.
country IE
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
garant G
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0272255
name1 Yao
name2 O.
country CN
author
ARLID cav_un_auth*0272256
name1 Endre
name2 P.
country RS
author
ARLID cav_un_auth*0272257
name1 Mirjama
name2 Š.
country RS
source
url http://library.utia.cas.cz/separaty/2011/E/mesiar-berwald type inequality for sugeno integral.pdf
cas_special
project
project_id GA402/08/0618
agency GA ČR
ARLID cav_un_auth*0241569
research CEZ:AV0Z10750506
abstract (eng) Nonadditive measure is a generalization of additive probability measure. Sugeno integral is a useful tool in several theoretical and applied statistics which has been built on non-additive measure. Integral inequalities play important roles in classical probability and measure theory. The classical Berwald integral inequality is one of the famous inequalities. This inequality turns out to have interesting applications in information theory. In this paper, Berwald type inequality for the Sugeno integral based on a concave function is studied. Several examples are given to illustrate the validity of this inequality. Finally, a conclusion is drawn and a problem for further investigations is given.
reportyear 2012
RIV BA
num_of_auth 5
permalink http://hdl.handle.net/11104/0196739
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-f 1.371
mrcbT16-g 0.251
mrcbT16-h 4.3
mrcbT16-i 0.04274
mrcbT16-j 0.39
mrcbT16-k 11480
mrcbT16-l 1014
mrcbT16-s 0.860
mrcbT16-4 Q2
mrcbT16-B 18.239
mrcbT16-C 87.924
mrcbT16-D Q4
mrcbT16-E Q2
arlyear 2010
mrcbU34 000284600700046 WOS
mrcbU63 cav_un_epca*0256160 Applied Mathematics and Computation 0096-3003 1873-5649 Roč. 217 č. 8 2010 4100 4108 Elsevier