bibtype J - Journal Article
ARLID 0360239
utime 20240903170623.0
mtime 20110707235959.9
WOS 000293207900005
SCOPUS 83455262553
title (primary) (eng) Nonlinear bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation
specification
page_count 15 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 47
volume 3 (2011)
page_num 370-384
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword non-linear state space model
keyword bounded uncertainty
keyword missing measurements
keyword state filtering
keyword vehicle position estimation
author (primary)
ARLID cav_un_auth*0101175
name1 Pavelková
name2 Lenka
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) The paper deals with parameter and state estimation and focuses on two problems that frequently occur in many practical applications: (i) bounded uncertainty and (ii) missing measurement data. An algorithm for the state estimation of the discrete-time non-linear state space model whose uncertainties are bounded is proposed. The algorithm also copes with situations when some measurements are missing. It uses Bayesian approach and evaluates maximum a posteriori probability (MAP) estimates of states and parameters. As the model uncertainties are supposed to have a bounded support, the searched estimates lie within an area that is described by the system of inequalities. In consequence, the problem of MAP estimation becomes the problem of nonlinear mathematical programming (NLP). The estimation with missing data reduces to the omission of corresponding inequalities in NLP formulation.
reportyear 2012
RIV BC
mrcbC52 4 A O 4a 4o 20231122134557.9
permalink http://hdl.handle.net/11104/0197835
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-f 0.473
mrcbT16-g 0.033
mrcbT16-h 9.5
mrcbT16-i 0.0016
mrcbT16-j 0.277
mrcbT16-k 403
mrcbT16-l 61
mrcbT16-q 21
mrcbT16-s 0.307
mrcbT16-y 20.45
mrcbT16-x 0.61
mrcbT16-4 Q2
mrcbT16-B 23.915
mrcbT16-C 17.500
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2011
mrcbTft \nSoubory v repozitáři: pavelkova-0360239.pdf, 0360239.pdf
mrcbU14 83455262553 SCOPUS
mrcbU34 000293207900005 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 47 č. 3 2011 370 384 Ústav teorie informace a automatizace AV ČR, v. v. i.