bibtype J - Journal Article
ARLID 0360244
utime 20240903170623.2
mtime 20110707235959.9
WOS 000293207900011
SCOPUS 83455221186
title (primary) (eng) Probabilistic mixture-based image modelling
specification
page_count 19 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 47
volume 3 (2011)
page_num 482-500
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword BTF texture modelling
keyword discrete distribution mixtures
keyword Bernoulli mixture
keyword Gaussian mixture
keyword multi-spectral texture modelling
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101100
name1 Havlíček
name2 Vojtěch
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2011/RO/haindl-0360244.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 387/2010
agency CESNET
country CZ
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
project
project_id GA103/11/0335
agency GA ČR
country CZ
research CEZ:AV0Z10750506
abstract (eng) During the last decade we have introduced probabilistic mixture models into image modelling area, which present highly atypical and extremely demanding applications for these models. This difficulty arises from the necessity to model tens thousands correlated data simultaneously and to reliably learn such unusually complex mixture models. Presented paper surveys these novel generative colour image models based on multivariate discrete, Gaussian or Bernoulli mixtures, respectively and demonstrates their major advantages and drawbacks on texture modelling applications. Our mixture models are restricted to represent two-dimensional visual information. Thus a measured 3D multispectral texture is spectrally factorized and corresponding multivariate mixture models are further learned from single orthogonal mono-spectral components and used to synthesise and enlarge these mono-spectral factor components.
reportyear 2012
RIV BD
mrcbC52 4 A O 4a 4o 20231122134558.2
permalink http://hdl.handle.net/11104/0197840
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-f 0.473
mrcbT16-g 0.033
mrcbT16-h 9.5
mrcbT16-i 0.0016
mrcbT16-j 0.277
mrcbT16-k 403
mrcbT16-l 61
mrcbT16-q 21
mrcbT16-s 0.307
mrcbT16-y 20.45
mrcbT16-x 0.61
mrcbT16-4 Q2
mrcbT16-B 23.915
mrcbT16-C 17.500
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2011
mrcbTft \nSoubory v repozitáři: Haindl-0360244.pdf, 0360244.pdf
mrcbU14 83455221186 SCOPUS
mrcbU34 000293207900011 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 47 č. 3 2011 482 500 Ústav teorie informace a automatizace AV ČR, v. v. i.