bibtype J - Journal Article
ARLID 0361444
utime 20240103195400.5
mtime 20110816235959.9
WOS 000290622200049
DOI 10.1016/j.amc.2011.03.100
title (primary) (eng) Hölder and Minkowski type inequalities for pseudo-integral
specification
page_count 9 s.
serial
ARLID cav_un_epca*0256160
ISSN 0096-3003
title Applied Mathematics and Computation
volume_id 217
volume 21 (2011)
page_num 8630-8639
publisher
name Elsevier
keyword Hölder’s inequality
keyword Minkowski’s inequality
keyword Pseudo-integral
keyword Semiring
author (primary)
ARLID cav_un_auth*0261431
name1 Agahi
name2 H.
country IR
author
ARLID cav_un_auth*0258953
name1 Ouyang
name2 Y.
country CN
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0273709
name1 Pap
name2 E.
country HU
author
ARLID cav_un_auth*0273710
name1 Štrbojaf
name2 M.
country RS
source
url http://library.utia.cas.cz/separaty/2011/E/mesiar-holder and minkowski type inequalities for pseudo-integral.pdf
cas_special
project
project_id GA402/08/0618
agency GA ČR
ARLID cav_un_auth*0241569
research CEZ:AV0Z10750506
abstract (eng) There are proven generalizations of the Hölder’s and Minkowski’s inequalities for the pseudo-integral. There are considered two cases of the real semiring with pseudo-operations: one, when pseudo-operations are defined by monotone and continuous function g, the second semiring ([a, b], sup, circled dot operator), where circled dot operator is generated and the third semiring where both pseudo-operations are idempotent, i.e., circled plus = sup and circled dot operator = inf.
reportyear 2012
RIV BA
num_of_auth 5
permalink http://hdl.handle.net/11104/0198754
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-f 1.338
mrcbT16-g 0.212
mrcbT16-h 4.9
mrcbT16-i 0.04829
mrcbT16-j 0.469
mrcbT16-k 11905
mrcbT16-l 1102
mrcbT16-s 1.050
mrcbT16-4 Q1
mrcbT16-B 22.476
mrcbT16-C 82.245
mrcbT16-D Q4
mrcbT16-E Q2
arlyear 2011
mrcbU34 000290622200049 WOS
mrcbU63 cav_un_epca*0256160 Applied Mathematics and Computation 0096-3003 1873-5649 Roč. 217 č. 21 2011 8630 8639 Elsevier