bibtype J - Journal Article
ARLID 0361630
utime 20240903170623.4
mtime 20110913235959.9
WOS 000293207900002
SCOPUS 83455262599
title (primary) (eng) Rank of tensors of l-out-of-k functions: an application in probabilistic inference
specification
page_count 20 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 47
volume 3 (2011)
page_num 317-336
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword Bayesian network
keyword probabilistic inference
keyword tensor rank
author (primary)
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2011/MTR/vomlel-0361630.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GA201/09/1891
agency GA ČR
ARLID cav_un_auth*0253175
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GEICC/08/E010
agency GA ČR
ARLID cav_un_auth*0241637
research CEZ:AV0Z10750506
abstract (eng) We study the problem of efficient probabilistic inference with Bayesian networks when some of the conditional probability tables represent deterministic or noisy l-out-of-k functions. These tables appear naturally in real-world applications when we observe a state of a variable that depends on its parents via an addition or noisy addition relation. We provide a lower bound of the rank and an upper bound for the symmetric border rank of tensors representing l-out-of-k functions. We propose an approximation of tensors representing noisy l-out-of-k functions by a sum of r tensors of rank one, where r is an upper bound of the symmetric border rank of the approximated tensor. We applied the suggested approximation to probabilistic inference in probabilistic graphical models. Numerical experiments reveal that we can get a gain in the order of two magnitudes but at the expense of a certain loss of precision.
reportyear 2012
RIV BB
num_of_auth 1
mrcbC52 4 A O 4a 4o 20231122134625.5
permalink http://hdl.handle.net/11104/0198901
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-f 0.473
mrcbT16-g 0.033
mrcbT16-h 9.5
mrcbT16-i 0.0016
mrcbT16-j 0.277
mrcbT16-k 403
mrcbT16-l 61
mrcbT16-q 21
mrcbT16-s 0.307
mrcbT16-y 20.45
mrcbT16-x 0.61
mrcbT16-4 Q2
mrcbT16-B 23.915
mrcbT16-C 17.500
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2011
mrcbTft \nSoubory v repozitáři: vomlel-0361630.pdf, 0361630.pdf
mrcbU14 83455262599 SCOPUS
mrcbU34 000293207900002 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 47 č. 3 2011 317 336 Ústav teorie informace a automatizace AV ČR, v. v. i.