bibtype J - Journal Article
ARLID 0362936
utime 20240103195429.5
mtime 20110913235959.9
WOS 000299271700005
SCOPUS 80051705232
DOI 10.1080/03605302.2011.574243
title (primary) (eng) Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds
specification
page_count 30 s.
serial
ARLID cav_un_epca*0256432
ISSN 0360-5302
title Communications in Partial Differential Equations
volume_id 36
volume 9 (2011)
page_num 1624-1653
publisher
name Taylor & Francis
keyword geometric wave equation
keyword stochastic wave equation
author (primary)
ARLID cav_un_auth*0202382
name1 Brzezniak
name2 Z.
country GB
author
ARLID cav_un_auth*0260292
name1 Ondreját
name2 Martin
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2011/SI/ondrejat-0362936.pdf
cas_special
project
project_id GA201/07/0237
agency GA ČR
ARLID cav_un_auth*0228641
research CEZ:AV0Z10750506
abstract (eng) Existence of a global weak solution of a stochastic wave equation with values in a compact Riemannian manifod driven by a spatially homogeneous Wiener process with finite spectral measure is proved. A recently introduced general method of constructing weak solutions of SPDEs that does not rely on any martingale representation theorem is employed.
reportyear 2012
RIV BA
num_of_auth 2
mrcbC52 4 A 4a 20231122134631.9
permalink http://hdl.handle.net/11104/0199102
mrcbT16-e MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-f 1.304
mrcbT16-g 0.237
mrcbT16-h >10.0
mrcbT16-i 0.01043
mrcbT16-j 1.466
mrcbT16-k 2161
mrcbT16-l 80
mrcbT16-s 2.082
mrcbT16-4 Q1
mrcbT16-B 92.188
mrcbT16-C 72.306
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2011
mrcbTft \nSoubory v repozitáři: ondrejat-0362936.pdf
mrcbU14 80051705232 SCOPUS
mrcbU34 000299271700005 WOS
mrcbU63 cav_un_epca*0256432 Communications in Partial Differential Equations 0360-5302 1532-4133 Roč. 36 č. 9 2011 1624 1653 Taylor & Francis