bibtype |
J -
Journal Article
|
ARLID |
0362936 |
utime |
20240103195429.5 |
mtime |
20110913235959.9 |
WOS |
000299271700005 |
SCOPUS |
80051705232 |
DOI |
10.1080/03605302.2011.574243 |
title
(primary) (eng) |
Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds |
specification |
|
serial |
ARLID |
cav_un_epca*0256432 |
ISSN |
0360-5302 |
title
|
Communications in Partial Differential Equations |
volume_id |
36 |
volume |
9 (2011) |
page_num |
1624-1653 |
publisher |
|
|
keyword |
geometric wave equation |
keyword |
stochastic wave equation |
author
(primary) |
ARLID |
cav_un_auth*0202382 |
name1 |
Brzezniak |
name2 |
Z. |
country |
GB |
|
author
|
ARLID |
cav_un_auth*0260292 |
name1 |
Ondreját |
name2 |
Martin |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA201/07/0237 |
agency |
GA ČR |
ARLID |
cav_un_auth*0228641 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
Existence of a global weak solution of a stochastic wave equation with values in a compact Riemannian manifod driven by a spatially homogeneous Wiener process with finite spectral measure is proved. A recently introduced general method of constructing weak solutions of SPDEs that does not rely on any martingale representation theorem is employed. |
reportyear |
2012 |
RIV |
BA |
num_of_auth |
2 |
mrcbC52 |
4 A 4a 20231122134631.9 |
permalink |
http://hdl.handle.net/11104/0199102 |
mrcbT16-e |
MATHEMATICS|MATHEMATICSAPPLIED |
mrcbT16-f |
1.304 |
mrcbT16-g |
0.237 |
mrcbT16-h |
>10.0 |
mrcbT16-i |
0.01043 |
mrcbT16-j |
1.466 |
mrcbT16-k |
2161 |
mrcbT16-l |
80 |
mrcbT16-s |
2.082 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
92.188 |
mrcbT16-C |
72.306 |
mrcbT16-D |
Q1* |
mrcbT16-E |
Q1* |
arlyear |
2011 |
mrcbTft |
\nSoubory v repozitáři: ondrejat-0362936.pdf |
mrcbU14 |
80051705232 SCOPUS |
mrcbU34 |
000299271700005 WOS |
mrcbU63 |
cav_un_epca*0256432 Communications in Partial Differential Equations 0360-5302 1532-4133 Roč. 36 č. 9 2011 1624 1653 Taylor & Francis |
|