bibtype |
J -
Journal Article
|
ARLID |
0364115 |
utime |
20240903170623.7 |
mtime |
20110920235959.9 |
WOS |
000296069900006 |
title
(primary) (eng) |
Bayesian estimation of mixtures with dynamic transitions and known component parameters |
specification |
page_count |
22 s. |
media_type |
web |
|
serial |
ARLID |
cav_un_epca*0297163 |
ISSN |
0023-5954 |
title
|
Kybernetika |
volume_id |
47 |
volume |
4 (2011) |
page_num |
572-594 |
publisher |
name |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
|
keyword |
mixture model |
keyword |
Bayesian estimation |
keyword |
approximation |
keyword |
clustering |
keyword |
classification |
author
(primary) |
ARLID |
cav_un_auth*0213012 |
name1 |
Nagy |
name2 |
I. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0108105 |
name1 |
Suzdaleva |
name2 |
Evgenia |
full_dept (cz) |
Adaptivní systémy |
full_dept |
Department of Adaptive Systems |
department (cz) |
AS |
department |
AS |
institution |
UTIA-B |
full_dept |
Department of Signal Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101124 |
name1 |
Kárný |
name2 |
Miroslav |
full_dept (cz) |
Adaptivní systémy |
full_dept |
Department of Adaptive Systems |
department (cz) |
AS |
department |
AS |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
1M0572 |
agency |
GA MŠk |
ARLID |
cav_un_auth*0001814 |
|
project |
project_id |
ENS/2009/UTIA |
agency |
Skoda Auto |
country |
CZ |
|
project |
project_id |
TA01030123 |
agency |
GA TA ČR |
ARLID |
cav_un_auth*0271776 |
|
project |
project_id |
GA102/08/0567 |
agency |
GA ČR |
ARLID |
cav_un_auth*0239566 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
Probabilistic mixtures provide flexible "universal" approximation of probability density functions. Their wide use is enabled by the availability of a range of efficient estimation algorithms. Among them, quasi-Bayesian estimation plays a prominent role as it runs "naturally" in one-pass mode. This is important in on-line applications and/or extensive databases. It even copes with dynamic nature of components forming the mixture. However, the quasi-Bayesian estimation relies on mixing via constant component weights. Thus, mixtures with dynamic components and dynamic transitions between them are not supported. The present paper fills this gap. For the sake of simplicity and to give a better insight into the task, the paper considers mixtures with known components. A general case with unknown components will be presented soon. |
reportyear |
2012 |
RIV |
BC |
num_of_auth |
3 |
mrcbC52 |
4 O 4o 20231122134646.1 |
permalink |
http://hdl.handle.net/11104/0199682 |
mrcbT16-e |
COMPUTERSCIENCECYBERNETICS |
mrcbT16-f |
0.473 |
mrcbT16-g |
0.033 |
mrcbT16-h |
9.5 |
mrcbT16-i |
0.0016 |
mrcbT16-j |
0.277 |
mrcbT16-k |
403 |
mrcbT16-l |
61 |
mrcbT16-q |
21 |
mrcbT16-s |
0.307 |
mrcbT16-y |
20.45 |
mrcbT16-x |
0.61 |
mrcbT16-4 |
Q2 |
mrcbT16-B |
23.915 |
mrcbT16-C |
17.500 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q3 |
arlyear |
2011 |
mrcbTft |
\nSoubory v repozitáři: 0364115.pdf |
mrcbU34 |
000296069900006 WOS |
mrcbU56 |
pdf |
mrcbU63 |
cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 47 č. 4 2011 572 594 Ústav teorie informace a automatizace AV ČR, v. v. i. |
|