bibtype J - Journal Article
ARLID 0364115
utime 20240903170623.7
mtime 20110920235959.9
WOS 000296069900006
title (primary) (eng) Bayesian estimation of mixtures with dynamic transitions and known component parameters
specification
page_count 22 s.
media_type web
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 47
volume 4 (2011)
page_num 572-594
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword mixture model
keyword Bayesian estimation
keyword approximation
keyword clustering
keyword classification
author (primary)
ARLID cav_un_auth*0213012
name1 Nagy
name2 I.
country CZ
author
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2011/AS/nagy-bayesian estimation of mixtures with dynamic transitions and known component parameters.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id ENS/2009/UTIA
agency Skoda Auto
country CZ
project
project_id TA01030123
agency GA TA ČR
ARLID cav_un_auth*0271776
project
project_id GA102/08/0567
agency GA ČR
ARLID cav_un_auth*0239566
research CEZ:AV0Z10750506
abstract (eng) Probabilistic mixtures provide flexible "universal" approximation of probability density functions. Their wide use is enabled by the availability of a range of efficient estimation algorithms. Among them, quasi-Bayesian estimation plays a prominent role as it runs "naturally" in one-pass mode. This is important in on-line applications and/or extensive databases. It even copes with dynamic nature of components forming the mixture. However, the quasi-Bayesian estimation relies on mixing via constant component weights. Thus, mixtures with dynamic components and dynamic transitions between them are not supported. The present paper fills this gap. For the sake of simplicity and to give a better insight into the task, the paper considers mixtures with known components. A general case with unknown components will be presented soon.
reportyear 2012
RIV BC
num_of_auth 3
mrcbC52 4 O 4o 20231122134646.1
permalink http://hdl.handle.net/11104/0199682
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-f 0.473
mrcbT16-g 0.033
mrcbT16-h 9.5
mrcbT16-i 0.0016
mrcbT16-j 0.277
mrcbT16-k 403
mrcbT16-l 61
mrcbT16-q 21
mrcbT16-s 0.307
mrcbT16-y 20.45
mrcbT16-x 0.61
mrcbT16-4 Q2
mrcbT16-B 23.915
mrcbT16-C 17.500
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2011
mrcbTft \nSoubory v repozitáři: 0364115.pdf
mrcbU34 000296069900006 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 47 č. 4 2011 572 594 Ústav teorie informace a automatizace AV ČR, v. v. i.