bibtype J - Journal Article
ARLID 0364820
utime 20240103195601.9
mtime 20111101235959.9
WOS 000297000300012
SCOPUS 80054779788
DOI 10.1016/j.neunet.2011.06.006
title (primary) (eng) Fully probabilistic control design in an adaptive critic framework
specification
page_count 8 s.
serial
ARLID cav_un_epca*0257310
ISSN 0893-6080
title Neural Networks
volume_id 24
volume 10 (2011)
page_num 1128-1135
publisher
name Elsevier
keyword Stochastic control design
keyword Fully probabilistic design
keyword Adaptive control
keyword Adaptive critic
author (primary)
ARLID cav_un_auth*0275438
name1 Herzallah
name2 R.
country JO
author
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2011/AS/karny-0364820.pdf
cas_special
project
project_id GA102/08/0567
agency GA ČR
ARLID cav_un_auth*0239566
research CEZ:AV0Z10750506
abstract (eng) Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback–Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper.
reportyear 2012
RIV BC
mrcbC52 4 A 4a 20231122134701.4
permalink http://hdl.handle.net/11104/0200201
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|NEUROSCIENCES
mrcbT16-f 2.477
mrcbT16-g 0.318
mrcbT16-h 9.9
mrcbT16-i 0.01073
mrcbT16-j 0.918
mrcbT16-k 5336
mrcbT16-l 110
mrcbT16-q 87
mrcbT16-s 0.835
mrcbT16-y 40.73
mrcbT16-x 3.16
mrcbT16-4 Q2
mrcbT16-B 49.356
mrcbT16-C 56.771
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2011
mrcbTft \nSoubory v repozitáři: karny-0364820.pdf
mrcbU14 80054779788 SCOPUS
mrcbU34 000297000300012 WOS
mrcbU63 cav_un_epca*0257310 Neural Networks 0893-6080 1879-2782 Roč. 24 č. 10 2011 1128 1135 Elsevier