bibtype J - Journal Article
ARLID 0365252
utime 20240103195631.5
mtime 20111031235959.9
WOS 000284884400002
DOI 10.1080/03610920903480858
title (primary) (eng) A Fay-Herriot Model with Different Random Effect Variances
specification
page_count 13 s.
media_type www
serial
ARLID cav_un_epca*0252520
ISSN 0361-0926
title Communications in Statistics - Theory and Methods
volume_id 40
volume 5 (2011)
page_num 785-797
publisher
name Taylor & Francis
keyword small area estimation
keyword Fay-Herriot model
keyword Linear mixed model
keyword Labor Force Survey
author (primary)
ARLID cav_un_auth*0101108
name1 Hobza
name2 Tomáš
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0015540
name1 Morales
name2 D.
country ES
author
ARLID cav_un_auth*0275007
name1 Herrador
name2 M.
country ES
author
ARLID cav_un_auth*0275008
name1 Esteban
name2 M.D.
country ES
source
url http://library.utia.cas.cz/separaty/2011/SI/hobza-a%20fay-herriot%20model%20with%20different%20random%20effect%20variances.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) A modification of the Fay–Herriot model is introduced to treat situations where small areas are divided in two groups and domain random effects have different variances across the groups. The model is applicable to data having a large subset of domains where direct estimates of the variable of interest cannot be described in the same way as in its complementary subset of domains. This is generally the case when domains are constructed by crossing geographical characteristics with sex. Algorithms and formulas to fit the model, to calculate EBLUPs and to estimate mean squared errors are given. Monte Carlo simulation experiments are presented to illustrate the gain of precision obtained by using the proposed model and to get some practical conclusions. A motivating application to Spanish Labour Force Survey data is also given.
reportyear 2012
RIV BB
num_of_auth 4
permalink http://hdl.handle.net/11104/0200537
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-f 0.386
mrcbT16-g 0.077
mrcbT16-h >10.0
mrcbT16-i 0.00599
mrcbT16-j 0.284
mrcbT16-k 1757
mrcbT16-l 285
mrcbT16-s 0.483
mrcbT16-4 Q3
mrcbT16-B 6.246
mrcbT16-C 6.466
mrcbT16-D Q4
mrcbT16-E Q4
arlyear 2011
mrcbU34 000284884400002 WOS
mrcbU63 cav_un_epca*0252520 Communications in Statistics - Theory and Methods 0361-0926 1532-415X Roč. 40 č. 5 2011 785 797 Taylor & Francis