bibtype |
J -
Journal Article
|
ARLID |
0367271 |
utime |
20240103195840.3 |
mtime |
20111125235959.9 |
WOS |
000298460300007 |
SCOPUS |
81355127223 |
DOI |
10.1016/j.ins.2011.09.018 |
title
(primary) (eng) |
Axiomatisation of fully probabilistic design |
specification |
|
serial |
ARLID |
cav_un_epca*0256752 |
ISSN |
0020-0255 |
title
|
Information Sciences |
volume_id |
186 |
volume |
1 (2012) |
page_num |
105-113 |
publisher |
|
|
keyword |
Bayesian decision making |
keyword |
Fully probabilistic design |
keyword |
Kullback–Leibler divergence |
keyword |
Unified decision making |
author
(primary) |
ARLID |
cav_un_auth*0101124 |
name1 |
Kárný |
name2 |
Miroslav |
full_dept (cz) |
Adaptivní systémy |
full_dept (eng) |
Department of Adaptive Systems |
department (cz) |
AS |
department (eng) |
AS |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101141 |
name1 |
Kroupa |
name2 |
Tomáš |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
2C06001 |
agency |
GA MŠk |
country |
CZ |
ARLID |
cav_un_auth*0217685 |
|
project |
project_id |
GA102/08/0567 |
agency |
GA ČR |
ARLID |
cav_un_auth*0239566 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
This text provides background of fully probabilistic design (FPD) of decision-making strategies and shows that it is a proper extension of the standard Bayesian decision making. FPD essentially minimises Kullback–Leibler divergence of closed-loop model on its ideal counterpart. The inspection of the background is important as the current motivation for FPD is mostly heuristic one, while the technical development of FPD confirms its far reaching possibilities. FPD unifies and simplifies subtasks and elements of decision making under uncertainty. For instance, (i) both system model and decision preferences are expressed in common probabilistic language; (ii) optimisation is simplified due to existence of explicit minimiser in stochastic dynamic programming; (iii) DM methodology for single and multiple aims is unified. |
reportyear |
2012 |
RIV |
BB |
num_of_auth |
2 |
mrcbC52 |
4 A 4a 20231122134749.9 |
permalink |
http://hdl.handle.net/11104/0202012 |
mrcbT16-e |
COMPUTERSCIENCEINFORMATIONSYSTEMS |
mrcbT16-f |
3.676 |
mrcbT16-g |
0.762 |
mrcbT16-h |
4.7 |
mrcbT16-i |
0.02864 |
mrcbT16-j |
0.945 |
mrcbT16-k |
10013 |
mrcbT16-l |
425 |
mrcbT16-q |
79 |
mrcbT16-s |
2.127 |
mrcbT16-y |
36.86 |
mrcbT16-x |
4.8 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
77.575 |
mrcbT16-C |
95.833 |
mrcbT16-D |
Q1 |
mrcbT16-E |
Q1 |
arlyear |
2012 |
mrcbTft |
\nSoubory v repozitáři: karny-0367271.pdf |
mrcbU14 |
81355127223 SCOPUS |
mrcbU34 |
000298460300007 WOS |
mrcbU63 |
cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 186 č. 1 2012 105 113 Elsevier |
|