bibtype J - Journal Article
ARLID 0368741
utime 20240903170624.1
mtime 20111208235959.9
WOS 000293207900007
SCOPUS 83455221244
title (primary) (eng) Improving feature selection process resistance to failures caused by curse-of-dimensionality effects
specification
page_count 25 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 47
volume 3 (2011)
page_num 401-425
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword feature selection
keyword curse of dimensionality
keyword over-fitting
keyword stability
keyword machine learning
keyword dimensionality reduction
author (primary)
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021092
name1 Pudil
name2 P.
country CZ
source
url http://library.utia.cas.cz/separaty/2011/RO/somol-0368741.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 2C06019
agency GA MŠk
country CZ
ARLID cav_un_auth*0216518
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
research CEZ:AV0Z10750506
abstract (eng) The purpose of feature selection in machine learning is at least two-fold – saving measurement acquisition costs and reducing the negative effects of the curse of dimensionality with the aim to improve the accuracy of the models and the classification rate of classifiers with respect to previously unknown data. Yet it has been shown recently that the process of feature selection itself can be negatively affected by the very same curse of dimensionality – feature selection methods may easily over-fit or perform unstably. Such an outcome is unlikely to generalize well and the resulting recognition system may fail to deliver the expectable performance. In many tasks, it is therefore crucial to employ additional mechanisms of making the feature selection process more stable and resistant the curse of dimensionality effects. In this paper we discuss three different approaches to reducing this problem.
reportyear 2012
RIV IN
num_of_auth 4
mrcbC52 4 A O 4a 4o 20231122134815.9
permalink http://hdl.handle.net/11104/0203004
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-f 0.473
mrcbT16-g 0.033
mrcbT16-h 9.5
mrcbT16-i 0.0016
mrcbT16-j 0.277
mrcbT16-k 403
mrcbT16-l 61
mrcbT16-q 21
mrcbT16-s 0.307
mrcbT16-y 20.45
mrcbT16-x 0.61
mrcbT16-4 Q2
mrcbT16-B 23.915
mrcbT16-C 17.500
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2011
mrcbTft \nSoubory v repozitáři: somol-0368741.pdf, 0368741.pdf
mrcbU14 83455221244 SCOPUS
mrcbU34 000293207900007 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 47 č. 3 2011 401 425 Ústav teorie informace a automatizace AV ČR, v. v. i.