bibtype |
J -
Journal Article
|
ARLID |
0370448 |
utime |
20240103200153.9 |
mtime |
20120109235959.9 |
WOS |
000298786900001 |
SCOPUS |
84855462282 |
DOI |
10.1002/acs.1270 |
title
(primary) (eng) |
Parameter tracking with partial forgetting method |
specification |
|
serial |
ARLID |
cav_un_epca*0256772 |
ISSN |
0890-6327 |
title
|
International Journal of Adaptive Control and Signal Processing |
volume_id |
26 |
volume |
1 (2012) |
page_num |
1-12 |
publisher |
|
|
keyword |
regression models |
keyword |
model |
keyword |
parameter estimation |
keyword |
parameter tracking |
author
(primary) |
ARLID |
cav_un_auth*0242543 |
name1 |
Dedecius |
name2 |
Kamil |
full_dept (cz) |
Adaptivní systémy |
full_dept (eng) |
Department of Adaptive Systems |
department (cz) |
AS |
department (eng) |
AS |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101167 |
name1 |
Nagy |
name2 |
Ivan |
full_dept (cz) |
Adaptivní systémy |
full_dept |
Department of Adaptive Systems |
department (cz) |
AS |
department |
AS |
institution |
UTIA-B |
full_dept |
Department of Signal Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101124 |
name1 |
Kárný |
name2 |
Miroslav |
full_dept (cz) |
Adaptivní systémy |
full_dept |
Department of Adaptive Systems |
department (cz) |
AS |
department |
AS |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA102/08/0567 |
agency |
GA ČR |
ARLID |
cav_un_auth*0239566 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
This paper concerns the Bayesian tracking of slowly varying parameters of a linear stochastic regression model. The modelled and predicted system output is assumed to possess time-varying mean value, whereas its dynamics are relatively stable. The proposed estimation method models the system output mean value by time-varying offset. It formulates three extreme hypotheses on model parameters’ variability: (i) no parameter varies; (ii) all parameters vary; and (iii) the offset varies. The Bayesian paradigm then provides a mixture as posterior distribution, which is appropriately projected to a feasible class. Exponential forgetting at ‘second’ hypotheses level allows tracking of slow variations of respective hypotheses. |
reportyear |
2012 |
RIV |
BB |
num_of_auth |
3 |
mrcbC52 |
4 A 4a 20231122134847.8 |
permalink |
http://hdl.handle.net/11104/0204249 |
mrcbT16-e |
AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC |
mrcbT16-f |
1.334 |
mrcbT16-g |
0.323 |
mrcbT16-h |
6 |
mrcbT16-i |
0.00262 |
mrcbT16-j |
0.522 |
mrcbT16-k |
809 |
mrcbT16-l |
65 |
mrcbT16-s |
0.779 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
48.308 |
mrcbT16-C |
52.469 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q2 |
arlyear |
2012 |
mrcbTft |
\nSoubory v repozitáři: dedecius-0370448.pdf |
mrcbU14 |
84855462282 SCOPUS |
mrcbU34 |
000298786900001 WOS |
mrcbU63 |
cav_un_epca*0256772 International Journal of Adaptive Control and Signal Processing 0890-6327 1099-1115 Roč. 26 č. 1 2012 1 12 Wiley |
|