bibtype J - Journal Article
ARLID 0370448
utime 20240103200153.9
mtime 20120109235959.9
WOS 000298786900001
SCOPUS 84855462282
DOI 10.1002/acs.1270
title (primary) (eng) Parameter tracking with partial forgetting method
specification
page_count 12 s.
serial
ARLID cav_un_epca*0256772
ISSN 0890-6327
title International Journal of Adaptive Control and Signal Processing
volume_id 26
volume 1 (2012)
page_num 1-12
publisher
name Wiley
keyword regression models
keyword model
keyword parameter estimation
keyword parameter tracking
author (primary)
ARLID cav_un_auth*0242543
name1 Dedecius
name2 Kamil
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/AS/dedecius-0370448.pdf
cas_special
project
project_id GA102/08/0567
agency GA ČR
ARLID cav_un_auth*0239566
research CEZ:AV0Z10750506
abstract (eng) This paper concerns the Bayesian tracking of slowly varying parameters of a linear stochastic regression model. The modelled and predicted system output is assumed to possess time-varying mean value, whereas its dynamics are relatively stable. The proposed estimation method models the system output mean value by time-varying offset. It formulates three extreme hypotheses on model parameters’ variability: (i) no parameter varies; (ii) all parameters vary; and (iii) the offset varies. The Bayesian paradigm then provides a mixture as posterior distribution, which is appropriately projected to a feasible class. Exponential forgetting at ‘second’ hypotheses level allows tracking of slow variations of respective hypotheses.
reportyear 2012
RIV BB
num_of_auth 3
mrcbC52 4 A 4a 20231122134847.8
permalink http://hdl.handle.net/11104/0204249
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 1.334
mrcbT16-g 0.323
mrcbT16-h 6
mrcbT16-i 0.00262
mrcbT16-j 0.522
mrcbT16-k 809
mrcbT16-l 65
mrcbT16-s 0.779
mrcbT16-4 Q1
mrcbT16-B 48.308
mrcbT16-C 52.469
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2012
mrcbTft \nSoubory v repozitáři: dedecius-0370448.pdf
mrcbU14 84855462282 SCOPUS
mrcbU34 000298786900001 WOS
mrcbU63 cav_un_epca*0256772 International Journal of Adaptive Control and Signal Processing 0890-6327 1099-1115 Roč. 26 č. 1 2012 1 12 Wiley