bibtype J - Journal Article
ARLID 0371119
utime 20240111140808.3
mtime 20120120235959.9
WOS 000300120900001
DOI 10.1016/j.apm.2011.08.042
title (primary) (eng) Recursive state estimation for hybrid systems
specification
page_count 12 s.
media_type www
serial
ARLID cav_un_epca*0252056
ISSN 0307-904X
title Applied Mathematical Modelling
volume_id 36
volume 4 (2012)
publisher
name Elsevier
keyword recursive state estimation
keyword hybrid systems
keyword state-space model
keyword filtering
keyword mixed data
author (primary)
ARLID cav_un_auth*0108105
name1 Suzdaleva
name2 Evgenia
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213012
name1 Nagy
name2 I.
country CZ
source
source_type pdf
url http://library.utia.cas.cz/separaty/2012/AS/suzdaleva-recursive state estimation for hybrid systems.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id TA01030123
agency GA TA ČR
ARLID cav_un_auth*0271776
research CEZ:AV0Z10750506
abstract (eng) The paper deals with recursive state estimation for hybrid systems. An unobservable state of such systems is changed both in a continuous and a discrete way. Fast and efficient online estimation of hybrid system state is desired in many application areas. The presented paper proposes to look at this problem via Bayesian filtering in the factorized (decomposed) form. General recursive solution is proposed as the probability density function, updated entry-wise. The paper summarizes general factorized filter specialized for (i) normal state-space models; (ii) multinomial state-space models with discrete observations; and (iii) hybrid systems. Illustrative experiments and comparison with one of the counterparts are provided.
reportyear 2012
RIV BC
num_of_auth 2
permalink http://hdl.handle.net/11104/0204733
mrcbT16-e ENGINEERINGMULTIDISCIPLINARY|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|MECHANICS
mrcbT16-f 1.674
mrcbT16-g 0.463
mrcbT16-h 3.7
mrcbT16-i 0.01503
mrcbT16-j 0.542
mrcbT16-k 4089
mrcbT16-l 497
mrcbT16-q 37
mrcbT16-s 0.889
mrcbT16-y 28.83
mrcbT16-x 2.17
mrcbT16-4 Q1
mrcbT16-B 46.88
mrcbT16-C 82.061
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2012
mrcbU34 000300120900001 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0252056 Applied Mathematical Modelling 0307-904X 1872-8480 Roč. 36 č. 4 2012 1347–1358 Elsevier