bibtype J - Journal Article
ARLID 0376080
utime 20240111140815.6
mtime 20120511235959.9
WOS 000302181800022
SCOPUS 84859087283
DOI 10.1109/TIP.2011.2175740
title (primary) (eng) Robust Multichannel Blind Deconvolution via Fast Alternating Minimization
specification
page_count 14 s.
serial
ARLID cav_un_epca*0253235
ISSN 1057-7149
title IEEE Transactions on Image Processing
volume_id 21
volume 4 (2012)
page_num 1687-1700
publisher
name Institute of Electrical and Electronics Engineers
keyword blind deconvolution
keyword augmented Lagrangian
keyword sparse representation
author (primary)
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274481
name1 Milanfar
name2 P.
country US
source
source_type pdf
url http://library.utia.cas.cz/separaty/2012/ZOI/sroubek-0376080.pdf
source_size 2.5MB
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GAP103/11/1552
agency GA ČR
ARLID cav_un_auth*0273618
project
project_id VG20102013064
agency GA MV
ARLID cav_un_auth*0273814
research CEZ:AV0Z10750506
abstract (eng) Blind deconvolution, which comprises simultaneous blur and image estimations, is a strongly ill-posed problem. It is by now well known that if multiple images of the same scene are acquired, this multichannel (MC) blind deconvolution problem is better posed and allows blur estimation directly fromthe degraded images.We improve theMC idea by adding robustness to noise and stability in the case of large blurs or if the blur size is vastly overestimated. We formulate blind deconvolution as an–regularized optimization problemand seek a solution by alternately optimizing with respect to the image and with respect to blurs. Each optimization step is converted to a constrained problem by variable splitting and then is addressed with an augmented Lagrangian method, which permits simple and fast implementation in the Fourier domain. The rapid convergence of the proposed method is illustrated on synthetically blurred data. Applicability is also demonstrated on the deconvolution of real photos taken by a digital camera.
reportyear 2013
RIV JD
mrcbC52 4 A 4a 20231122135022.2
permalink http://hdl.handle.net/11104/0208579
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 4.017
mrcbT16-g 0.407
mrcbT16-h 7.6
mrcbT16-i 0.03545
mrcbT16-j 1.642
mrcbT16-k 13814
mrcbT16-l 408
mrcbT16-q 156
mrcbT16-s 1.521
mrcbT16-y 35.94
mrcbT16-x 5.36
mrcbT16-4 Q1
mrcbT16-B 95.396
mrcbT16-C 91.170
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2012
mrcbTft \nSoubory v repozitáři: sroubek-0376080.pdf
mrcbU14 84859087283 SCOPUS
mrcbU34 000302181800022 WOS
mrcbU56 pdf 2.5MB
mrcbU63 cav_un_epca*0253235 IEEE Transactions on Image Processing 1057-7149 1941-0042 Roč. 21 č. 4 2012 1687 1700 Institute of Electrical and Electronics Engineers