bibtype C - Conference Paper (international conference)
ARLID 0376327
utime 20240111140815.7
mtime 20120911235959.9
DOI 10.1007/978-3-642-28551-6_37
title (primary) (eng) On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach
specification
page_count 9 s.
media_type C
serial
ARLID cav_un_epca*0376325
ISBN 978-3-642-28550-9
title Latent Variable Analysis and Signal Separation
page_num 297-305
publisher
place Heidelberg
name Springer
year 2012
editor
name1 Theis
name2 Fabian
keyword tensor decomposition
keyword pattern analysis
keyword structural complexity
author (primary)
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0272321
name1 Cichocki
name2 A.
country JP
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0208388
name1 Mandic
name2 D.
country GB
author
ARLID cav_un_auth*0214972
name1 Matsuoka
name2 K.
country JP
source
url http://library.utia.cas.cz/separaty/2012/SI/tichavsky-on revealing replicating structures in multiway data a novel tensor decomposition approach.pdf
source_size 533kB
cas_special
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
abstract (eng) A novel tensor decomposition is proposed to make it possible to identify replicating structures in complex data, such as textures and patterns in music spectrograms. In order to establish a computational framework for this paradigm, we adopt a multiway (tensor) approach. To this end, a novel tensor product is introduced, and the subsequent analysis of its properties shows a perfect match to the task of identification of recurrent structures present in the data. Out of a whole class of possible algorithms, we illuminate those derived so as to cater for orthogonal and nonnegative patterns. Simulations on texture images and a complex music sequence confirm the benefits of the proposed model and of the associated learning algorithms.
action
ARLID cav_un_auth*0280771
name Latent Variable Analysis and Signal Separation,10th International Conference, LVA/ICA 2012
place Tel Aviv
dates 12.03.2012-15.03.2012
country IL
reportyear 2013
RIV BB
num_of_auth 5
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0208757
arlyear 2012
mrcbU56 533kB
mrcbU63 cav_un_epca*0376325 Latent Variable Analysis and Signal Separation 978-3-642-28550-9 297 305 Heidelberg Springer 2012 Lecture Notes on Computer Science 7191
mrcbU67 Theis Fabian 340