bibtype C - Conference Paper (international conference)
ARLID 0376328
utime 20240111140815.7
mtime 20120911235959.9
DOI 10.1007/978-3-642-28551-6_57
title (primary) (eng) Semi-blind Source Separation Based on ICA and Overlapped Speech Detection
specification
page_count 8 s.
media_type C
serial
ARLID cav_un_epca*0376325
ISBN 978-3-642-28550-9
title Latent Variable Analysis and Signal Separation
page_num 462-469
publisher
place Heidelberg
name Springer
year 2012
editor
name1 Theis
name2 Fabian
keyword audio source separation
keyword cancellation filter
keyword independent component analysis
author (primary)
ARLID cav_un_auth*0231631
name1 Malek
name2 J.
country CZ
author
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/SI/tichavsky-semi-blind source separation based on ica and overlapped speech detection.pdf
source_size 224kB
cas_special
project
project_id GAP103/11/1947
agency GA ČR
country CZ
ARLID cav_un_auth*0301478
abstract (eng) We propose a semi-blind method for separation of stereo recordings of several sources. The method begins with computation of a set of cancellation filters for potential fixed positions of the sources. These filters are computed from one-source-only intervals selected upon cross-talk detection. Each source in some of the fixed positions is canceled by the corresponding filter, by which the other sources are separated. The former source can be then separated by adaptive suppression of the separated sources. To select the appropriate cancellation filter, we use Independent Component Analysis. The performance of the proposed method is verified on real-world SiSEC data with two fixed and/or moving sources.
action
ARLID cav_un_auth*0280771
name Latent Variable Analysis and Signal Separation,10th International Conference, LVA/ICA 2012
place Tel Aviv
dates 12.03.2012-15.03.2012
country IL
reportyear 2013
RIV BB
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0208758
arlyear 2012
mrcbU56 224kB
mrcbU63 cav_un_epca*0376325 Latent Variable Analysis and Signal Separation 978-3-642-28550-9 462 469 Heidelberg Springer 2012 Lecture Notes on Computer Science 7191
mrcbU67 Theis Fabian 340