bibtype J - Journal Article
ARLID 0376413
utime 20240103200824.9
mtime 20120511235959.9
WOS 000301214900008
DOI 10.1016/j.csda.2010.11.014
title (primary) (eng) Computing multiple-output regression quantile regions
specification
page_count 14 s.
serial
ARLID cav_un_epca*0256439
ISSN 0167-9473
title Computational Statistics and Data Analysis
volume_id 56
volume 4 (2012)
page_num 840-853
publisher
name Elsevier
keyword halfspace depth
keyword multiple-output regression
keyword parametric linear programming
keyword quantile regression
author (primary)
ARLID cav_un_auth*0274302
name1 Paindaveine
name2 D.
country BE
author
ARLID cav_un_auth*0266474
name1 Šiman
name2 Miroslav
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf
cas_special
project
project_id 1M06047
agency GA MŠk
country CZ
ARLID cav_un_auth*0217941
research CEZ:AV0Z10750506
abstract (eng) A procedure relying on linear programming techniques is developed to compute (regression) quantile regions that have been defined recently. In the location case, this procedure allows for computing halfspace depth regions even beyond dimension two. The corresponding algorithm is described in detail, and illustrations are provided both for simulated and real data. The efficiency of a Matlab implementation of the algorithm is also investigated through extensive simulations.
reportyear 2013
RIV BA
permalink http://hdl.handle.net/11104/0208819
mrcbT16-e COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|STATISTICSPROBABILITY
mrcbT16-f 1.449
mrcbT16-g 0.415
mrcbT16-h 5.8
mrcbT16-i 0.02601
mrcbT16-j 0.917
mrcbT16-k 4718
mrcbT16-l 325
mrcbT16-q 51
mrcbT16-s 1.277
mrcbT16-y 26.07
mrcbT16-x 1.4
mrcbT16-4 Q1
mrcbT16-B 68.868
mrcbT16-C 60.006
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2012
mrcbU34 000301214900008 WOS
mrcbU63 cav_un_epca*0256439 Computational Statistics and Data Analysis 0167-9473 1872-7352 Roč. 56 č. 4 2012 840 853 Elsevier