bibtype J - Journal Article
ARLID 0376766
utime 20240903170624.5
mtime 20120511235959.9
WOS 000301269800006
title (primary) (eng) Chance constrained problems: penalty reformulation and performance of sample approximation technique
specification
page_count 18 s.
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 48
volume 1 (2012)
page_num 105-122
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword chance constrained problems
keyword penalty functions
keyword asymptotic equivalence
keyword sample approximation technique
keyword investment problem
author (primary)
ARLID cav_un_auth*0280972
name1 Branda
name2 Martin
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/E/branda-chance constrained problems penalty reformulation and performance of sample approximation technique.pdf
cas_special
project
project_id GBP402/12/G097
agency GA ČR
country CZ
ARLID cav_un_auth*0281000
research CEZ:AV0Z10750506
abstract (eng) We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6,11]. The obtained problems with penalties and with a fixed set of feasible solutions are simpler to solve and analyze then the chance constrained programs. We discuss solving both problems using Monte-Carlo simulation techniques for the cases when the set of feasible solution is finite or infinite bounded. The approach is applied to a financial optimization problem with Value at Risk constraint, transaction costs and integer allocations. We compare the ability to generate a feasible solution of the original chance constrained problem using the sample approximations of the chance constraints directly or via sample approximation of the penalty function objective.
reportyear 2013
RIV BB
num_of_auth 1
mrcbC52 4 O 4o 20231122135039.7
permalink http://hdl.handle.net/11104/0209085
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-f 0.548
mrcbT16-g 0.054
mrcbT16-h 9.6
mrcbT16-i 0.00164
mrcbT16-j 0.284
mrcbT16-k 536
mrcbT16-l 74
mrcbT16-q 21
mrcbT16-s 0.410
mrcbT16-y 20.28
mrcbT16-x 0.78
mrcbT16-4 Q2
mrcbT16-B 30.653
mrcbT16-C 16.667
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2012
mrcbTft \nSoubory v repozitáři: 0376766.pdf
mrcbU34 000301269800006 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 48 č. 1 2012 105 122 Ústav teorie informace a automatizace AV ČR, v. v. i.