bibtype |
J -
Journal Article
|
ARLID |
0377141 |
utime |
20240103200915.5 |
mtime |
20120608235959.9 |
WOS |
000299962100003 |
DOI |
10.1007/s11228-011-0179-7 |
title
(primary) (eng) |
Shape optimization in 2D contact problems with given friction and a solution-dependent coefficient of friction |
specification |
|
serial |
ARLID |
cav_un_epca*0343967 |
ISSN |
1877-0533 |
title
|
Set-Valued and Variational Analysis |
volume_id |
20 |
volume |
1 (2012) |
page_num |
31-59 |
publisher |
|
|
keyword |
shape optimization |
keyword |
Signorini problem |
keyword |
model with given frinction |
keyword |
solution-dependent coefficient of friction |
keyword |
mathematical probrams with equilibrium constraints |
author
(primary) |
ARLID |
cav_un_auth*0211704 |
name1 |
Haslinger |
name2 |
J. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0101173 |
name1 |
Outrata |
name2 |
Jiří |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0281511 |
name1 |
Pathó |
name2 |
R. |
country |
CZ |
|
source |
|
cas_special |
project |
project_id |
IAA100750802 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0241214 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
The paper deals with shape optimization of elastic bodies in unilateral contact. The aim is to extend the existing results to the case of contact problems, where the coefficient of friction depends on the solution. We consider the two-dimensional Signorini problem, coupled with the physically less accurate model of given friction, but assume a solution-dependent coefficient of friction. First, we investigate the shape optimization problem in the continuous, infinite-dimensional setting, followed by a suitable finite-dimensional approximation based on the finite-element method. Convergence analysis is presented as well. Next, an algebraic form of the state problem is studied, which is obtained from the discretized problem by further approximating the frictional term by a quadrature rule. It is shown that if the coefficient of friction is Lipschitz continuous with a sufficiently small modulus, then the algebraic state problem is uniquely solvable and its solution is a Lipschitz continuous function of the control variable, describing the shape of the elastic body. |
reportyear |
2013 |
RIV |
BA |
num_of_auth |
3 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0209384 |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-f |
1.055 |
mrcbT16-g |
0.226 |
mrcbT16-i |
0.00102 |
mrcbT16-j |
0.8 |
mrcbT16-k |
87 |
mrcbT16-l |
31 |
mrcbT16-s |
1.307 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
74.481 |
mrcbT16-C |
70.243 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q2 |
arlyear |
2012 |
mrcbU34 |
000299962100003 WOS |
mrcbU63 |
cav_un_epca*0343967 Set-Valued and Variational Analysis 1877-0533 1877-0541 Roč. 20 č. 1 2012 31 59 Springer |
|