bibtype C - Conference Paper (international conference)
ARLID 0378658
utime 20240103201024.4
mtime 20120828235959.9
DOI 10.3182/20120711-3-BE-2027.00104
title (primary) (eng) Approximate Bayesian Recursive Estimation of Linear Model with Uniform Noise
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0379871
ISBN 978-3-902823-06-9
title Proceedings of the 16th IFAC Symposium on System Identification
page_num 1803-1807
publisher
place Brussels
name IFAC
year 2012
keyword recursive parameter estimation
keyword bounded noise
keyword Bayesian learning
keyword autoregressive models
author (primary)
ARLID cav_un_auth*0101175
name1 Pavelková
name2 Lenka
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/AS/pavelkova-approximate bayesian recursive estimation of linear model with uniform noise.pdf
cas_special
project
project_id TA01030123
agency GA TA ČR
ARLID cav_un_auth*0271776
abstract (eng) Recursive estimation forms core of adaptive prediction and control. Dynamic exponential family is the only but narrow class of parametric models that allows exact Bayesian estimation. The paper provides an approximate estimation of important autoregressive model with exogenous variables (ARX) and uniform noise. This model reflects well physical nature of modelled system: majority of signals, noise and estimated parameters are bounded. Unlike former solutions, the paper proposes an algorithm that provides a full (approximate) posterior probability density function (pdf) of unknown parameters. Behaviour of the designed algorithm is illustrated by simulations.
action
ARLID cav_un_auth*0282287
name 16th IFAC Symposium on System Identification The International Federation of Automatic Control
place Brussels
dates 11.07.2012-13.07.2012
country BE
reportyear 2013
RIV BC
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0210073
arlyear 2012
mrcbU63 cav_un_epca*0379871 Proceedings of the 16th IFAC Symposium on System Identification 978-3-902823-06-9 1803 1807 Brussels IFAC 2012