bibtype J - Journal Article
ARLID 0379312
utime 20240111140818.9
mtime 20120828235959.9
WOS 000306760300001
SCOPUS 84864400768
DOI 10.1088/0967-3334/33/8/N39
title (primary) (eng) Robust removal of short-duration artifacts in long neonatal EEG recordings using wavelet-enhanced ICA and adaptive combining of tentative reconstructions
specification
page_count 11 s.
serial
ARLID cav_un_epca*0254737
ISSN 0967-3334
title Physiological Measurement
volume_id 33
volume 8 (2012)
page_num 39-49
publisher
name Institute of Physics Publishing
keyword electroencephalogram
keyword artifact removal
keyword independent component analysis
keyword wavelet denoising
author (primary)
ARLID cav_un_auth*0254398
name1 Zima
name2 Miroslav
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0049302
name1 Paul
name2 K.
country CZ
author
ARLID cav_un_auth*0215799
name1 Krajča
name2 V.
country CZ
source
url http://library.utia.cas.cz/separaty/2014/SI/zima-0379312.pdf
source_size 1.5MB
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
abstract (eng) The goal of this paper is to describe a Robust Artifact Removal (RAR) method - an automatic sequential procedure which is capable of removing short-duration, high-amplitude artifacts from long-term neonatal EEG recordings. Such artifacts are mainly caused by movement activity, and have an adverse effect on automatic processing of long-term sleep recordings. The artifacts are removed sequentially in short-term signals using ICA transformation and wavelet denoising. In order to gain robustness of the RAR method, the whole EEG recording is processed multiple times. The resulting tentative reconstructions are then combined. We show results in a data set of signals from ten healthy newborns. Those results prove, both qualitatively and quantitatively, that the RAR method is capable of automatically rejecting the mentioned artifacts without changes in overall signal properties such as the spectrum. The method is shown to perform better than either the wavelet-enhanced ICA or the simple artifact rejection method without the combination procedure.
reportyear 2013
RIV FH
num_of_auth 4
mrcbC52 4 A 4a 20231122135140.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0210556
mrcbT16-e BIOPHYSICS|ENGINEERINGBIOMEDICAL|PHYSIOLOGY
mrcbT16-f 1.822
mrcbT16-g 0.297
mrcbT16-h 6.4
mrcbT16-i 0.00628
mrcbT16-j 0.492
mrcbT16-k 2969
mrcbT16-l 155
mrcbT16-q 53
mrcbT16-s 0.541
mrcbT16-y 32.73
mrcbT16-x 1.75
mrcbT16-4 Q3
mrcbT16-B 14.399
mrcbT16-C 30.696
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2012
mrcbTft \nSoubory v repozitáři: zima-0379312.pdf
mrcbU14 84864400768 SCOPUS
mrcbU34 000306760300001 WOS
mrcbU56 1.5MB
mrcbU63 cav_un_epca*0254737 Physiological Measurement 0967-3334 1361-6579 Roč. 33 č. 8 2012 39 49 Institute of Physics Publishing