bibtype C - Conference Paper (international conference)
ARLID 0380079
utime 20240111140819.5
mtime 20120911235959.9
WOS 000310623800298
title (primary) (eng) A treatment of EEG data by underdetermined blind source separation for motor imagery classification
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0380077
ISBN 978-1-4673-1068-0
ISSN 2076-1465
title 20th European Signal Processing Conference (EUSIPCO 2012)
page_num 1484-1488
publisher
place Bucharest
name EURASIP
year 2012
keyword electroencephalogram
keyword brain-computer Interface
keyword underdetermined blind source separation
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0272321
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2012/SI/tichavsky-a treatment of eeg data by underdetermined blind source separation for motor imagery classification.pdf
source_size 283 kB
cas_special
project
project_id GAP103/11/1947
agency GA ČR
country CZ
ARLID cav_un_auth*0301478
abstract (eng) Brain-Computer Interfaces (BCI) controlled through imagined movements cannot work properly without a correct classification of EEG signals. The difficulty of this problem consists in low signal-to-noise ratio, because EEG may contain strong signal components that are not related to motor imagery. In this paper, these artifact components are to be suppressed using a recently proposed underdetermined blind source separation method and a novel MMSE beamformer. We use these tools to remove unwanted components of EEG to increase the classification accuracy of the BCI system. In our experiments with several datasets, the classification is improved by up to 10%.
action
ARLID cav_un_auth*0283080
name 20th European Signal Processing Conference (EUSIPCO 2012)
place Bukurešť
dates 27.08.2012-31.08.2012
country RO
reportyear 2013
RIV FH
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0210892
arlyear 2012
mrcbU34 000310623800298 WOS
mrcbU56 283 kB
mrcbU63 cav_un_epca*0380077 20th European Signal Processing Conference (EUSIPCO 2012) 978-1-4673-1068-0 2076-1465 1484 1488 Bucharest EURASIP 2012