bibtype C - Conference Paper (international conference)
ARLID 0380289
utime 20240103201154.4
mtime 20120921235959.9
DOI 10.1007/978-3-642-32436-9_13
title (primary) (eng) Bidirectional Texture Function Simultaneous Autoregressive Model
specification
page_count 11 s.
media_type P
serial
ARLID cav_un_epca*0380282
ISBN 978-3-642-32435-2
ISSN 0302-9743
title Computational Intelligence for Multimedia Understanding
page_num 149-159
publisher
place Berlin
name Springer
year 2012
keyword bidirectional texture function
keyword texture analysis
keyword texture synthesis
keyword data compression
keyword virtual reality
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0283206
name1 Havlíček
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/RO/haindl-bidirectional texture function simultaneous autoregressive model.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
project
project_id 387/2010
agency CESNET
country CZ
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
project
project_id GAP103/11/0335
agency GA ČR
ARLID cav_un_auth*0273627
abstract (eng) The Bidirectional Texture Function (BTF) is the recent most advanced representation of visual properties of surface materials. It specifies their altering appearance due to varying illumination and viewing conditions. Corresponding huge BTF measurements require a mathematical representation allowing simultaneously extremal compression as well as high visual fidelity. We present a novel Markovian BTF model based on a set of underlying simultaneous autoregressive models (SAR). This complex but efficient BTF-SAR model combines several multispectral band limited spatial factors and range map sub-models to produce the required BTF texture space. The BTF-SAR model enables very high BTF space compression ratio, texture enlargement, and reconstruction of missing unmeasured parts of the BTF space.
action
ARLID cav_un_auth*0283201
name MUSCLE
place Pisa
dates 13.12.2011-15.12.2011
country IT
reportyear 2013
RIV BD
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0211031
mrcbT16-q 100
mrcbT16-s 0.314
mrcbT16-y 16.66
mrcbT16-x 0.49
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2012
mrcbU63 cav_un_epca*0380282 Computational Intelligence for Multimedia Understanding 978-3-642-32435-2 0302-9743 149 159 Berlin Springer 2012 Lecture Notes in Computer Science 7252