bibtype J - Journal Article
ARLID 0381108
utime 20240103201248.8
mtime 20121031235959.9
WOS 000309395000001
SCOPUS 84867132831
DOI 10.1214/EJP.v17-2003
title (primary) (eng) Systems of branching, annihilating, and coalescing particles
specification
page_count 32 s.
serial
ARLID cav_un_epca*0041954
ISSN 1083-6489
title Electronic Journal of Probability
volume_id 17
volume 80 (2012)
page_num 1-32
publisher
name Institute of Mathematical Statistics
keyword reaction-diffusion process
keyword branching
keyword coalescence
keyword annihilation
keyword thinning
keyword Poissonization
author (primary)
ARLID cav_un_auth*0284764
name1 Athreya
name2 S. R.
country IN
author
ARLID cav_un_auth*0217893
name1 Swart
name2 Jan M.
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/SI/swart-0381108.pdf
cas_special
project
project_id GAP201/10/0752
agency GA ČR
ARLID cav_un_auth*0263519
abstract (eng) This paper studies systems of particles following independent random walks and subject to annihilation, binary branching, coalescence, and deaths. In the case without annihilation, such systems have been studied in our 2005 paper “Branching coalescing particle systems”. The case with annihilation is considerably more difficult, mainly as a consequence of the non-monotonicity of such systems and a more complicated duality. Nevertheless, we show that adding annihilation does not significantly change the long-time behavior of the process and in fact, systems with annihilation can be obtained by thinning systems without annihilation.
reportyear 2013
RIV BA
num_of_auth 2
mrcbC52 4 A 4a 20231122135219.2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0211648
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-f 0.922
mrcbT16-g 0.113
mrcbT16-h 4.9
mrcbT16-i 0.0075
mrcbT16-j 1.1
mrcbT16-k 611
mrcbT16-l 106
mrcbT16-q 21
mrcbT16-s 1.481
mrcbT16-y 24.5
mrcbT16-x 0.79
mrcbT16-4 Q1
mrcbT16-B 66.489
mrcbT16-C 43.162
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2012
mrcbTft \nSoubory v repozitáři: swart-0381108.pdf
mrcbU14 84867132831 SCOPUS
mrcbU34 000309395000001 WOS
mrcbU63 cav_un_epca*0041954 Electronic Journal of Probability 1083-6489 1083-6489 Roč. 17 č. 80 2012 1 32 Institute of Mathematical Statistics