bibtype |
J -
Journal Article
|
ARLID |
0381108 |
utime |
20240103201248.8 |
mtime |
20121031235959.9 |
WOS |
000309395000001 |
SCOPUS |
84867132831 |
DOI |
10.1214/EJP.v17-2003 |
title
(primary) (eng) |
Systems of branching, annihilating, and coalescing particles |
specification |
|
serial |
ARLID |
cav_un_epca*0041954 |
ISSN |
1083-6489 |
title
|
Electronic Journal of Probability |
volume_id |
17 |
volume |
80 (2012) |
page_num |
1-32 |
publisher |
name |
Institute of Mathematical Statistics |
|
|
keyword |
reaction-diffusion process |
keyword |
branching |
keyword |
coalescence |
keyword |
annihilation |
keyword |
thinning |
keyword |
Poissonization |
author
(primary) |
ARLID |
cav_un_auth*0284764 |
name1 |
Athreya |
name2 |
S. R. |
country |
IN |
|
author
|
ARLID |
cav_un_auth*0217893 |
name1 |
Swart |
name2 |
Jan M. |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GAP201/10/0752 |
agency |
GA ČR |
ARLID |
cav_un_auth*0263519 |
|
abstract
(eng) |
This paper studies systems of particles following independent random walks and subject to annihilation, binary branching, coalescence, and deaths. In the case without annihilation, such systems have been studied in our 2005 paper “Branching coalescing particle systems”. The case with annihilation is considerably more difficult, mainly as a consequence of the non-monotonicity of such systems and a more complicated duality. Nevertheless, we show that adding annihilation does not significantly change the long-time behavior of the process and in fact, systems with annihilation can be obtained by thinning systems without annihilation. |
reportyear |
2013 |
RIV |
BA |
num_of_auth |
2 |
mrcbC52 |
4 A 4a 20231122135219.2 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0211648 |
mrcbT16-e |
STATISTICSPROBABILITY |
mrcbT16-f |
0.922 |
mrcbT16-g |
0.113 |
mrcbT16-h |
4.9 |
mrcbT16-i |
0.0075 |
mrcbT16-j |
1.1 |
mrcbT16-k |
611 |
mrcbT16-l |
106 |
mrcbT16-q |
21 |
mrcbT16-s |
1.481 |
mrcbT16-y |
24.5 |
mrcbT16-x |
0.79 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
66.489 |
mrcbT16-C |
43.162 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q1 |
arlyear |
2012 |
mrcbTft |
\nSoubory v repozitáři: swart-0381108.pdf |
mrcbU14 |
84867132831 SCOPUS |
mrcbU34 |
000309395000001 WOS |
mrcbU63 |
cav_un_epca*0041954 Electronic Journal of Probability 1083-6489 1083-6489 Roč. 17 č. 80 2012 1 32 Institute of Mathematical Statistics |
|