bibtype C - Conference Paper (international conference)
ARLID 0381515
utime 20240111140820.5
mtime 20121107235959.9
WOS 000342820400046
DOI 10.1007/978-3-642-33715-4_46
title (primary) (eng) Deconvolving PSFs for a Better Motion Deblurring Using Multiple Images
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0382719
ISBN 978-3-642-33715-4
ISSN 0302-9743
title Computer Vision – ECCV 2012
part_title Lecture Notes in Computer Science
page_num 636-647
publisher
place Berlin
name Springer
year 2012
keyword blind deconvolution
keyword motion blur
keyword PSF
author (primary)
ARLID cav_un_auth*0284209
name1 Zhu
name2 X.
country US
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274481
name1 Milanfar
name2 P.
country US
source
source_type pdf
url http://library.utia.cas.cz/separaty/2012/ZOI/sroubek-deconvolving psfs for a better motion deblurring using multiple images.pdf
source_size 2MB
cas_special
project
project_id VG20102013064
agency GA MV
ARLID cav_un_auth*0273814
project
project_id GAP103/11/1552
agency GA ČR
ARLID cav_un_auth*0273618
abstract (eng) In this paper, instead of estimating the PSFs directly and only once from the observed images, we first generate a rough estimate of the PSFs using a robust multichannel deconvolution algorithm, and then “deconvolve the PSFs” to refine the outputs. Simulated and real data experiments show that this strategy works quite well for motion blurred images, producing state of the art results.
action
ARLID cav_un_auth*0284210
name ECCV12 - 12th European Conference on Computer Vision
place Florence
dates 07.10.2012-13.10.2012
country IT
reportyear 2013
RIV JD
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0211967
mrcbC86 n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Imaging Science Photographic Technology
mrcbT16-q 100
mrcbT16-s 0.314
mrcbT16-y 16.66
mrcbT16-x 0.49
mrcbT16-4 Q2
mrcbT16-E Q2
arlyear 2012
mrcbU34 000342820400046 WOS
mrcbU56 pdf 2MB
mrcbU63 cav_un_epca*0382719 Computer Vision – ECCV 2012 978-3-642-33715-4 0302-9743 636 647 Berlin Springer 2012 7576 Lecture Notes in Computer Science