bibtype J - Journal Article
ARLID 0381577
utime 20240103201322.6
mtime 20121030235959.9
DOI 10.2478/v10158-012-0007-2
title (primary) (eng) Stochastic Analysis of a Queue Length Model Using a Graphics Processing Unit
specification
page_count 8 s.
serial
ARLID cav_un_epca*0357592
ISSN 1802-971X
title Transactions on Transport Sciences
volume_id 5
volume 2 (2012)
page_num 55-62
keyword graphics processing unit
keyword GPU
keyword Monte Carlo simulation
keyword computer simulation
keyword modeling
author (primary)
ARLID cav_un_auth*0205734
name1 Přikryl
name2 Jan
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
garant G
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0255838
name1 Kocijan
name2 J.
country SI
source
url http://library.utia.cas.cz/separaty/2012/AS/prikryl-stochastic analysis of a queue length model using a graphics processing unit.pdf
cas_special
project
project_id MEB091015
agency GA MŠk
country CZ
ARLID cav_un_auth*0263551
abstract (eng) Mathematical modeling is an inevitable part of system analysis and design in science and engineering. When a parametric mathematical description is used, the issue of the parameter estimation accuracy arises. Models with uncertain parameter values can be evaluated using various methods and computer simulation is among the most popular in the engineering community. Nevertheless, an exhaustive numerical analysis of models with numerous uncertain parameters requires a substantial computational effort. The purpose of this paper is to show how the computation can be accelerated using a parallel configuration of graphics processing units (GPU). The assessment of the computational speedup is illustrated with a case study. The case study is a simulation of Highway Capacity Manual 2000 Queue Model with selected uncertain parameters. The computational results show that the parallel computation solution is efficient for larger amount of samples when the initial and communication overhead of parallel computation becomes a sufficiently small part of the whole process.
reportyear 2013
RIV BC
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0212013
arlyear 2012
mrcbU63 cav_un_epca*0357592 Transactions on Transport Sciences 1802-971X Roč. 5 č. 2 2012 55 62