bibtype C - Conference Paper (international conference)
ARLID 0381751
utime 20240103201335.9
mtime 20121105235959.9
WOS 000312544300031
DOI 10.1109/ISIT.2012.6283516
title (primary) (eng) Minimization of Entropy Functionals Revisited
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0382541
ISBN 978-1-4673-2579-0
ISSN 2157-8095
title Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), 2012
page_num 150-154
publisher
place Cambridge
name IEEE
year 2012
keyword maximum entropy
keyword moment constraint
keyword primal/dual solutions
keyword normal integrand
keyword convex duality
keyword Bregman projection
keyword generalized exponential family
author (primary)
ARLID cav_un_auth*0284663
name1 Imre
name2 C.
country HU
author
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/MTR/matus-minimization of entropy functionals revisited.pdf
cas_special
project
project_id GA201/08/0539
agency GA ČR
ARLID cav_un_auth*0239648
project
project_id GAP202/10/0618
agency GA ČR
ARLID cav_un_auth*0263481
abstract (eng) Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are assumed to be strictly convex but not autonomous or differentiable. The effective domain of the value function is described by a modification of the concept of convex core. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. Main results assume a dual constraint qualification but dispense with the primal constraint qualification. Minimizers and generalized minimizers are explicitly described whenever the primal value is finite. Existence of a generalized dual solution is established whenever the dual value is finite. A generalized Pythagorean identity is presented using Bregman distance and a correction term. Results are applied to minimization of Bregman distances.
action
ARLID cav_un_auth*0285167
name IEEE International Symposium on Information Theory Proceedings (ISIT), 2012
place Cambridge
dates 01.07.2012-06.07.2015
country US
reportyear 2013
RIV BA
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0007173
arlyear 2012
mrcbU34 000312544300031 WOS
mrcbU63 cav_un_epca*0382541 Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), 2012 978-1-4673-2579-0 2157-8095 150 154 Cambridge IEEE 2012