| bibtype |
J -
Journal Article
|
| ARLID |
0381759 |
| utime |
20240103201336.6 |
| mtime |
20121030235959.9 |
| WOS |
000309879200005 |
| DOI |
10.1007/s00500-012-0836-2 |
| title
(primary) (eng) |
Extension of belief functions to infinite-valued events |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0258368 |
| ISSN |
1432-7643 |
| title
|
Soft Computing |
| volume_id |
16 |
| volume |
11 (2012) |
| page_num |
1851-1861 |
| publisher |
|
|
| keyword |
belief function |
| keyword |
MV-algebra |
| keyword |
Moebius transform |
| author
(primary) |
| ARLID |
cav_un_auth*0101141 |
| name1 |
Kroupa |
| name2 |
Tomáš |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept (eng) |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department (eng) |
MTR |
| institution |
UTIA-B |
| full_dept |
Department of Decision Making Theory |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| project |
| project_id |
1M0572 |
| agency |
GA MŠk |
| ARLID |
cav_un_auth*0001814 |
|
| project |
| project_id |
GA201/09/1891 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0253175 |
|
| abstract
(eng) |
We generalise belief functions to many-valued events which are represented by elements of Lindenbaum algebra of infinite-valued Łukasiewicz propositional logic. Our approach is based on mass assignments used in the Dempster–Shafer theory of evidence. A generalised belief function is totally monotone and it has Choquet integral representation with respect to a unique belief measure on Boolean events. |
| reportyear |
2013 |
| RIV |
BA |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0212155 |
| mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE|COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS |
| mrcbT16-f |
1.364 |
| mrcbT16-g |
0.193 |
| mrcbT16-h |
4.6 |
| mrcbT16-i |
0.00458 |
| mrcbT16-j |
0.416 |
| mrcbT16-k |
1380 |
| mrcbT16-l |
161 |
| mrcbT16-s |
0.747 |
| mrcbT16-4 |
Q1 |
| mrcbT16-B |
18.633 |
| mrcbT16-C |
41.576 |
| mrcbT16-D |
Q4 |
| mrcbT16-E |
Q2 |
| arlyear |
2012 |
| mrcbU34 |
000309879200005 WOS |
| mrcbU63 |
cav_un_epca*0258368 Soft Computing 1432-7643 1433-7479 Roč. 16 č. 11 2012 1851 1861 Springer |
|