bibtype J - Journal Article
ARLID 0381818
utime 20240103201340.9
mtime 20121030235959.9
WOS 000311003500019
DOI 10.1016/j.physa.2012.08.003
title (primary) (eng) Measuring capital market efficiency: Global and local correlations structure
specification
page_count 10 s.
serial
ARLID cav_un_epca*0257423
ISSN 0378-4371
title Physica. A : Statistical Mechanics and its Applications
volume_id 392
volume 1 (2013)
page_num 184-193
publisher
name Elsevier
keyword Capital market efficiency
keyword Fractal dimension
keyword Long-range dependence
keyword Short-range dependence
author (primary)
ARLID cav_un_auth*0256902
name1 Krištoufek
name2 Ladislav
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101230
name1 Vošvrda
name2 Miloslav
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/E/kristoufek-measuring capital market efficiency global and local correlations structure.pdf
cas_special
project
project_id GBP402/12/G097
agency GA ČR
country CZ
ARLID cav_un_auth*0281000
abstract (eng) We introduce a new measure for capital market efficiency. The measure takes into consid- eration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.
reportyear 2013
RIV AH
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0212200
mrcbT16-e PHYSICSMULTIDISCIPLINARY
mrcbT16-f 1.684
mrcbT16-g 0.423
mrcbT16-h 8.III
mrcbT16-i 0.02372
mrcbT16-j 0.473
mrcbT16-k 15866
mrcbT16-l 653
mrcbT16-s 0.657
mrcbT16-z ScienceCitationIndex
mrcbT16-4 Q2
mrcbT16-B 54.929
mrcbT16-C 68.590
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2013
mrcbU34 000311003500019 WOS
mrcbU63 cav_un_epca*0257423 Physica. A : Statistical Mechanics and its Applications 0378-4371 1873-2119 Roč. 392 č. 1 2013 184 193 Elsevier