bibtype J - Journal Article
ARLID 0381822
utime 20240103201341.2
mtime 20121030235959.9
WOS 000305302600006
DOI 10.1016/j.physa.2012.04.005
title (primary) (eng) How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study
specification
page_count 9 s.
serial
ARLID cav_un_epca*0257423
ISSN 0378-4371
title Physica. A : Statistical Mechanics and its Applications
volume_id 391
volume 17 (2012)
page_num 4252-4260
publisher
name Elsevier
keyword Rescaled range analysis
keyword Modified rescaled range analysis
keyword Hurst exponent
keyword Long-term memory
keyword Short-term memory
author (primary)
ARLID cav_un_auth*0256902
name1 Krištoufek
name2 Ladislav
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/E/kristoufek-how are rescaled range analyses affected by different memory and distributional properties.pdf
cas_special
project
project_id 118310
agency GA UK
country CZ
ARLID cav_un_auth*0274537
project
project_id 261 501
agency SVV
country CZ
project
project_id GA402/09/0965
agency GA ČR
ARLID cav_un_auth*0253176
abstract (eng) In this paper, we present the results of Monte Carlo simulations for two popular techniques of long-range correlation detection — classical and modified rescaled range analyses. A focus is put on an effect of different distributional properties on an ability of the methods to efficiently distinguish between short-term memory and long-term memory. To do so, we analyze the behavior of the estimators for independent, short-range dependent, and long-range dependent processes with innovations from eight different distributions. We find that apart from a combination of very high levels of kurtosis and skewness, both estimators are quite robust to distributional properties. Importantly, we show that R/S is biased upwards (yet not strongly) for short-range dependent processes, while M-R/S is strongly biased downwards for long-range dependent processes regardless of the distribution of innovations.
reportyear 2013
RIV AH
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0212203
mrcbT16-e PHYSICSMULTIDISCIPLINARY
mrcbT16-f 1.651
mrcbT16-g 0.51
mrcbT16-h 7.7
mrcbT16-i 0.0279
mrcbT16-j 0.475
mrcbT16-k 15376
mrcbT16-l 674
mrcbT16-q 87
mrcbT16-s 0.677
mrcbT16-y 34.67
mrcbT16-x 1.76
mrcbT16-4 Q2
mrcbT16-B 44.7
mrcbT16-C 66.867
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2012
mrcbU34 000305302600006 WOS
mrcbU63 cav_un_epca*0257423 Physica. A : Statistical Mechanics and its Applications 0378-4371 1873-2119 Roč. 391 č. 17 2012 4252 4260 Elsevier